J. Semicond. > Volume 36 > Issue 12 > Article Number: 123003

Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature

Cholho Jang 1, 2, , Zhizhen Ye 1, , and Jianguo Lü 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Ga doped ZnO(GZO)/Cu grid double layer structures were prepared at room temperature(RT). We have studied the electrical and optical characteristics of the GZO/Cu grid double layer as a function of the Cu grid spacing distance. The optical transmittance and sheet resistance of the GZO/Cu grid double layer are higher than that of the GZO/Cu film double layer regardless of the Cu grid spacing distance and increase as the Cu grid spacing distance increases. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid double layer well follow the trend of the experimentally observed transmittance and sheet resistance ones. For the GZO/Cu grid double layer with a Cu grid spacing distance of 1 mm, the highest figure of merit(ΦTC=6.19×10-3 Ω-1) was obtained. In this case, the transmittance, resistivity and filling factor(FF) of the GZO/Cu grid double layer are 83.74%, 1.10×10-4 Ω·cm and 0.173, respectively.

Key words: transparent electrodeelectron beam evaporationCu gridGa doped ZnO

Abstract: Ga doped ZnO(GZO)/Cu grid double layer structures were prepared at room temperature(RT). We have studied the electrical and optical characteristics of the GZO/Cu grid double layer as a function of the Cu grid spacing distance. The optical transmittance and sheet resistance of the GZO/Cu grid double layer are higher than that of the GZO/Cu film double layer regardless of the Cu grid spacing distance and increase as the Cu grid spacing distance increases. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid double layer well follow the trend of the experimentally observed transmittance and sheet resistance ones. For the GZO/Cu grid double layer with a Cu grid spacing distance of 1 mm, the highest figure of merit(ΦTC=6.19×10-3 Ω-1) was obtained. In this case, the transmittance, resistivity and filling factor(FF) of the GZO/Cu grid double layer are 83.74%, 1.10×10-4 Ω·cm and 0.173, respectively.

Key words: transparent electrodeelectron beam evaporationCu gridGa doped ZnO



References:

[1]

Song D H, Choi M H, Kim J Y. Process optimization of organic thin-film transistor by ink-jet printing of DH4T on plastic[J]. Appl Phys Lett, 2007, 90: 053504.

[2]

Bie X, Lu J G, Gong L. Transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering at low temperature[J]. Appl Surf Sci, 2009, 256: 289.

[3]

Liu H Y, Avrutin V, Izyumskaya N. Transparent conducting oxides for electrode applications in light emitting and absorbing devices[J]. Superlattices and Microstructures, 2010, 48: 458.

[4]

Kim D S, Park J H, Lee S J. Effects of oxygen concentration on the properties of Al-doped ZnO transparent conductive films deposited by pulsed DC magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2013, 16: 997.

[5]

Pawar B N, Cai G, Ham D H. Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells[J]. Sol Energy Mater Sol Cells, 2009, 93: 524.

[6]

Gong L, Lu J G, Ye Z Z. Room-temperature growth and optoelectronic properties of GZO/ZnO bilayer films on polycarbonate substrates by magnetron sputtering[J]. Sol Energy Mate Sol Cells, 2010, 94: 1282.

[7]

Ma Q B, Ye Z Z, He H P. Preparation and characterization of transparent conductive ZnO:Ga films by DC reactive magnetron sputtering[J]. Materials Characterization, 2008, 59: 124.

[8]

De S, Higgins T M, Lyons P E. Silver nanowire networks as flexible, transparent, conducting films:extremely high DC to optical conductivity ratios[J]. ASC Nano, 2009, 3: 1767.

[9]

Sahu D R, Huang J L. Dependence of film thickness on the electrical and optical properties of ZnO-Cu-ZnO multilayers[J]. Appl Surf Sci, 2006, 253: 915.

[10]

Pandey R, Wie C H, Lin X. Fluorine doped zinc tin oxide multilayer transparent conducting oxides for organic photovoltaic's cells[J]. Sol Energy Mater Sol Cells, 2015, 134: 5.

[11]

Gong L, Lu J G, Ye Z Z. Transparent conductive Ga-doped ZnO/Cu multilayers prepared on polymer substrates at room temperature[J]. Sol Energy Mater Sol Cells, 2011, 95: 1826.

[12]

Al-Kuhaili M F, Al-Maghrabi M A, Durrani S M A. Investigation of ZnO/Al/ZnO multilayers as transparent conducting coatings[J]. J Phys D:Appl Phys, 2008, 41: 215302.

[13]

Yang J D, Ok I W, Cho J M. Ag interlayered transparent conducting electrode for photovoltaic cells[J]. Jpn J Appl Phys, 2012, 51: 10N.

[14]

Park Y S, Kim H K, Kim S W. Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes[J]. J Electrochem Soc, 2010, 157.

[15]

Ji L C, Huang L, Liu Y. Optical and electrical properties of zinc oxide/indium/zinc oxide multilayer structures[J]. Thin Solid Films, 2011, 519: 3789.

[16]

An H R, Oh S T, Kim C Y. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process[J]. Journal of Alloys and Compounds, 2014, 615: 728.

[17]

Zou J G, Yip H L, Hau S K. Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells[J]. Appl Phys Lett, 2010, 96: 203301.

[18]

Jang Y H, Kim J H, Byun D Y. Invisible metal-grid transparent electrode prepared by electrohydrodynamic(EHD) jet printing[J]. J Phys D:Appl Phys, 2013, 46: 155103.

[19]

Ghosh D S, Chen T L, Pruneri V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid[J]. Appl Phys Lett, 2010, 96: 041109.

[20]

Jeong J A, Kim J H, Kim H K. Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing[J]. Sol Energy Mater Sol Cells, 2011, 95: 1974.

[21]

Haacke G. New figure of merit for transparent conductors[J]. J Appl Phys, 1976, 47: 4086.

[1]

Song D H, Choi M H, Kim J Y. Process optimization of organic thin-film transistor by ink-jet printing of DH4T on plastic[J]. Appl Phys Lett, 2007, 90: 053504.

[2]

Bie X, Lu J G, Gong L. Transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering at low temperature[J]. Appl Surf Sci, 2009, 256: 289.

[3]

Liu H Y, Avrutin V, Izyumskaya N. Transparent conducting oxides for electrode applications in light emitting and absorbing devices[J]. Superlattices and Microstructures, 2010, 48: 458.

[4]

Kim D S, Park J H, Lee S J. Effects of oxygen concentration on the properties of Al-doped ZnO transparent conductive films deposited by pulsed DC magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2013, 16: 997.

[5]

Pawar B N, Cai G, Ham D H. Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells[J]. Sol Energy Mater Sol Cells, 2009, 93: 524.

[6]

Gong L, Lu J G, Ye Z Z. Room-temperature growth and optoelectronic properties of GZO/ZnO bilayer films on polycarbonate substrates by magnetron sputtering[J]. Sol Energy Mate Sol Cells, 2010, 94: 1282.

[7]

Ma Q B, Ye Z Z, He H P. Preparation and characterization of transparent conductive ZnO:Ga films by DC reactive magnetron sputtering[J]. Materials Characterization, 2008, 59: 124.

[8]

De S, Higgins T M, Lyons P E. Silver nanowire networks as flexible, transparent, conducting films:extremely high DC to optical conductivity ratios[J]. ASC Nano, 2009, 3: 1767.

[9]

Sahu D R, Huang J L. Dependence of film thickness on the electrical and optical properties of ZnO-Cu-ZnO multilayers[J]. Appl Surf Sci, 2006, 253: 915.

[10]

Pandey R, Wie C H, Lin X. Fluorine doped zinc tin oxide multilayer transparent conducting oxides for organic photovoltaic's cells[J]. Sol Energy Mater Sol Cells, 2015, 134: 5.

[11]

Gong L, Lu J G, Ye Z Z. Transparent conductive Ga-doped ZnO/Cu multilayers prepared on polymer substrates at room temperature[J]. Sol Energy Mater Sol Cells, 2011, 95: 1826.

[12]

Al-Kuhaili M F, Al-Maghrabi M A, Durrani S M A. Investigation of ZnO/Al/ZnO multilayers as transparent conducting coatings[J]. J Phys D:Appl Phys, 2008, 41: 215302.

[13]

Yang J D, Ok I W, Cho J M. Ag interlayered transparent conducting electrode for photovoltaic cells[J]. Jpn J Appl Phys, 2012, 51: 10N.

[14]

Park Y S, Kim H K, Kim S W. Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes[J]. J Electrochem Soc, 2010, 157.

[15]

Ji L C, Huang L, Liu Y. Optical and electrical properties of zinc oxide/indium/zinc oxide multilayer structures[J]. Thin Solid Films, 2011, 519: 3789.

[16]

An H R, Oh S T, Kim C Y. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process[J]. Journal of Alloys and Compounds, 2014, 615: 728.

[17]

Zou J G, Yip H L, Hau S K. Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells[J]. Appl Phys Lett, 2010, 96: 203301.

[18]

Jang Y H, Kim J H, Byun D Y. Invisible metal-grid transparent electrode prepared by electrohydrodynamic(EHD) jet printing[J]. J Phys D:Appl Phys, 2013, 46: 155103.

[19]

Ghosh D S, Chen T L, Pruneri V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid[J]. Appl Phys Lett, 2010, 96: 041109.

[20]

Jeong J A, Kim J H, Kim H K. Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing[J]. Sol Energy Mater Sol Cells, 2011, 95: 1974.

[21]

Haacke G. New figure of merit for transparent conductors[J]. J Appl Phys, 1976, 47: 4086.

[1]

Nitin Kumar, Bhawana Joshi, K. Asokan. Influence of deposition rate on the structural, optical and electrical properties of electron beam evaporated SnO2 thin films for transparent conducting electrode applications. J. Semicond., 2018, 39(8): 083002. doi: 10.1088/1674-4926/39/8/083002

[2]

Qingsong Wang, Masao Ikeda, Ming Tan, Pan Dai, Yuanyuan Wu, Shulong Lu, Hui Yang. High quality non-rectifying contact of ITO with both Ni and n-type GaAs. J. Semicond., 2015, 36(5): 053003. doi: 10.1088/1674-4926/36/5/053003

[3]

S.R. Routray, T.R. Lenka. Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell. J. Semicond., 2017, 38(9): 092001. doi: 10.1088/1674-4926/38/9/092001

[4]

Liu Zhen, Wang Xiaofeng, Yang Hua, Duan Yao, Zeng Yiping. A Ga-doped ZnO transparent conduct layer for GaN-based LEDs. J. Semicond., 2010, 31(9): 094002. doi: 10.1088/1674-4926/31/9/094002

[5]

Zhu Xinghua, Yang Dingyu, Wei Zhaorong, Sun Hui, Wang Zhiguo, Zu Xiaotao. Photoconductive properties of lead iodide films prepared by electron beam evaporation. J. Semicond., 2010, 31(8): 083002. doi: 10.1088/1674-4926/31/8/083002

[6]

Liu Huilian, Yang Jinghai, Zhang Yongjun, Wang Yaxin, Wei Maobin, Zhao Liyou. Room Temperature Ferromagnetism in Nanostructure Cu-Doped ZnO. J. Semicond., 2008, 29(11): 2256.

[7]

Yang Dingyu, Zhu Xinghua, Wei Zhaorong, Yang Weiqing, Li Lezhong, Yang Jun, Gao Xiuying. Structural and optical properties of polycrystalline CdS thin films depositedby electron beam evaporation. J. Semicond., 2011, 32(2): 023001. doi: 10.1088/1674-4926/32/2/023001

[8]

Zhao Miao, Zhou Daibing, Tan Manqing, Wang Xiaodong, Wu Xuming. Preparation of Si/SiO2 Optical Thin Film by Double Source Electron Beam Evaporation Technology. J. Semicond., 2006, 27(9): 1586.

[9]

Yang Weifeng, Liu Zhuguang, Zhang Feng, Huang Huolin, Wu Zhengyun. Structural,Electrical,and Optical Properties of Transparent Conductive Al-Doped ZnO Films Prepared by RF Magnetron Sputtering. J. Semicond., 2008, 29(12): 2311.

[10]

Zhang Huafu, Liu Hanfa, Lei Chengxin, Zhou Aiping, Yuan Changkun. Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J. Semicond., 2010, 31(8): 083005. doi: 10.1088/1674-4926/31/8/083005

[11]

Said Benramache, Boubaker Benhaoua, Foued Chabane. Effect of substrate temperature on the stability of transparent conducting cobalt doped ZnO thin films. J. Semicond., 2012, 33(9): 093001. doi: 10.1088/1674-4926/33/9/093001

[12]

Chenglin Qi, Yang Huang, Teng Zhan, Qinjin Wang, Xiaoyan Yi, Zhiqiang Liu. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode-insulator-semiconductor structure. J. Semicond., 2017, 38(8): 084005. doi: 10.1088/1674-4926/38/8/084005

[13]

Cao Qiang, Liu Guolei, Deng Jiangxia, Xing Pengfei, Tian Yufeng, Chen Yanxue, Yan Shishen, Mei Liangmo. Single Crystalline Co-Doped ZnO Thin Films by Molecular Beam Epitaxy and Room Temperature Ferromagnetism. J. Semicond., 2007, 28(S1): 282.

[14]

Lili Wu, Shuo Jin, Guanggen Zeng, Jingquan Zhang, Wei Li, Lianghuan Feng, Bing Li, Wenwu Wang. Cu doped AlSb polycrystalline thin films. J. Semicond., 2013, 34(1): 013003. doi: 10.1088/1674-4926/34/1/013003

[15]

Ding Sun, Shengzhi Xu, Li Zhang, Ze Chen, Yang Ge, Ning Wang, Xuejiao Liang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Influence of selenium evaporation temperature on the structure of Cu2ZnSnSe4 thin film deposited by a co-evaporation process. J. Semicond., 2015, 36(4): 044009. doi: 10.1088/1674-4926/36/4/044009

[16]

Zhang Huafu, Yang Shugang, Liu Hanfa, Yuan Changkun. Preparation and characterization of transparent conducting ZnO:W films by DC magnetron sputtering. J. Semicond., 2011, 32(4): 043002. doi: 10.1088/1674-4926/32/4/043002

[17]

Ye Li, Junfang Chen, Junhui Ma, Lifen Zhou. The optimization functions of ICP discharge in preparation of Cu-Zn-Sn precursors and CZTS films by co-evaporation. J. Semicond., 2016, 37(2): 023003. doi: 10.1088/1674-4926/37/2/023003

[18]

Wu Xinkun, Liu Wei, Cheng Shuying, Lai Yunfeng, Jia Hongjie. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation. J. Semicond., 2012, 33(2): 022002. doi: 10.1088/1674-4926/33/2/022002

[19]

Liu Jianjun, Yan Jinliang, Shi Liang, Li Ting. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering. J. Semicond., 2010, 31(10): 103001. doi: 10.1088/1674-4926/31/10/103001

[20]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

Search

Advanced Search >>

GET CITATION

C Jang, Z Z Ye, J Lü. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature[J]. J. Semicond., 2015, 36(12): 123003. doi: 10.1088/1674-4926/36/12/123003.

Export: BibTex EndNote

Article Metrics

Article views: 1140 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 05 May 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误