J. Semicond. > Volume 36 > Issue 12 > Article Number: 124002

Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

Kamal Zeghdar 1, , Lakhdar Dehimi 1, 2, , Achour Saadoune 1, and Nouredine Sengouga 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: We report the current-voltage(I-V) characteristics of the Schottky diode(Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission(TE) theory and the inhomogeneous barrier heights(BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission(TE) mechanism with a Gaussian distribution of the Schottky barrier heights(SBHs). Simulated I-V characteristics are in good agreement with the measurements[Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14:41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

Key words: simulationSDBSilvacoInPtemperatureI-V-T

Abstract: We report the current-voltage(I-V) characteristics of the Schottky diode(Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission(TE) theory and the inhomogeneous barrier heights(BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission(TE) mechanism with a Gaussian distribution of the Schottky barrier heights(SBHs). Simulated I-V characteristics are in good agreement with the measurements[Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14:41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

Key words: simulationSDBSilvacoInPtemperatureI-V-T



References:

[1]

Yan H, Shunsuke E, Yusuke H. Plastic Schottky barriers fabricated by a line patterning technology[J]. Chem Lett, 2007, 36(8): 986.

[2]

Rhoderick E H, Williams R H. Metal-semiconductor contacts[J]. Clarendon Press, Oxford University Press, 1988: 20.

[3]

Cetin H, Ayyildiz E. Temperature dependence of electrical parameters of the Au/n-InP Schottky barrier diodes[J]. Semicond Sci Technol, 2005, 20: 625.

[4]

Williams R H, Robinson G Y. Physics and chemistry of Ⅲ-V compound semiconductor interfaces[J]. New York:Plenum Press, 1985.

[5]

Van Meirhaeghe R L, Lafle' re W H, Cardon F. Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts[J]. J Appl Phys, 1994, 76: 403.

[6]

Pande K P. Characteristics of MOS solar cells built on(n-type) InP substrates[J]. IEEE Trans Electron Devices, 1980.

[7]

Kamimura K, Suzuki T, Kunioka A. Properties of Schottky barriers on p-type indium phosphide[J]. Jpn J Appl Phys, 1980, 19.

[8]

Messick L. A D.C. to 16 GHz indium phosphide MISFET[J]. Solid-State Electron, 1980(23): 551.

[9]

Imai Y, Ishibashi T, Ida M. High cut-off frequency InP MESFET[J]. IEEE Trans Electron Device Lett, 1981, EDL-2: 67.

[10]

Lile D L, Collins D A. An insulated-gate charge transfer device on InP[J]. Appl Phys Lett, 1980, 37: 552.

[11]

Chand S, Kumar J. Current-voltage characteristics and barrier parameters of Pd2Si/p-Si(111) Schottky diodes in a wide temperature range[J]. Semicond Sci Technol, 1995, 10: 1680.

[12]

Karatas S, Altindal S, Caskar M. Current transport in Zn/p-Si(100) Schottky barrier diodes at high temperatures[J]. Physica B, 2005, 357: 386.

[13]

Hackam R, Harrop P. Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes[J]. IEEE Trans Electron Devices, 1972, 19: 1231.

[14]

Bhuiyan A S, Martinez A, Esteve D. A new Richardson plot for non-ideal Schottky diodes[J]. Thin Solid Films, 1988, 161: 93.

[15]

Korucu D, Mammadov T S. Temperature-dependent current-conduction mechanisms in Au/n-InP Schottky barrier diodes(SBDs)[J]. J Optoelectron Adv Mater, 2012, 14: 41.

[16]

ATLAS user's manual, vo ls. 1-2[J]. Silvaco International, 2004.

[17]

Sze S M. Physics of semiconductor devices[J]. 2nd ed. New York:John Wiley and Sons, 1982.

[18]

Cheung S K, Cheung N W. Extraction of Schottky diode parameters from forward current-voltage characteristics[J]. Appl Phys Lett, 1986, 49: 85.

[19]

Cinar K, Yidium N, Coskun C. Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes[J]. J Appl Phys, 2009, 106: 073717.

[20]

Ejderha K, Zengin A, Orak I. Dependence of characteristic diode parameters on sample temperature in Ni/epitaxy n-Si contacts[J]. Mater Sci Semicond Proc, 2011, 14: 5.

[21]

Wilmsen C W. Physics and chemistry of Ⅲ-V compound semi-conductor interfaces[J]. New York:Plenum Press, 1985.

[22]

Werner J H, Guttler H H. Barrier inhomogeneities at Schottky contacts[J]. J Appl Phys, 1991, 69: 1522.

[23]

Zhu S Y, van Meirhaeghe R L, Detavernier C. Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si(100) and(111)[J]. Solid-State Electron, 2000, 44: 663.

[24]

Soylu M, Abay B. Barrier characteristics of gold Schottky contacts on moderately doped n-InP based on temperature dependent I-V and C-V measurements[J]. Microelectron Eng, 2009, 86: 88.

[25]

Cimilli F E, Saglam M, Efeoglu H. Temperature-dependent current voltage characteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height[J]. Physica B, 2009, 404: 1558.

[1]

Yan H, Shunsuke E, Yusuke H. Plastic Schottky barriers fabricated by a line patterning technology[J]. Chem Lett, 2007, 36(8): 986.

[2]

Rhoderick E H, Williams R H. Metal-semiconductor contacts[J]. Clarendon Press, Oxford University Press, 1988: 20.

[3]

Cetin H, Ayyildiz E. Temperature dependence of electrical parameters of the Au/n-InP Schottky barrier diodes[J]. Semicond Sci Technol, 2005, 20: 625.

[4]

Williams R H, Robinson G Y. Physics and chemistry of Ⅲ-V compound semiconductor interfaces[J]. New York:Plenum Press, 1985.

[5]

Van Meirhaeghe R L, Lafle' re W H, Cardon F. Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts[J]. J Appl Phys, 1994, 76: 403.

[6]

Pande K P. Characteristics of MOS solar cells built on(n-type) InP substrates[J]. IEEE Trans Electron Devices, 1980.

[7]

Kamimura K, Suzuki T, Kunioka A. Properties of Schottky barriers on p-type indium phosphide[J]. Jpn J Appl Phys, 1980, 19.

[8]

Messick L. A D.C. to 16 GHz indium phosphide MISFET[J]. Solid-State Electron, 1980(23): 551.

[9]

Imai Y, Ishibashi T, Ida M. High cut-off frequency InP MESFET[J]. IEEE Trans Electron Device Lett, 1981, EDL-2: 67.

[10]

Lile D L, Collins D A. An insulated-gate charge transfer device on InP[J]. Appl Phys Lett, 1980, 37: 552.

[11]

Chand S, Kumar J. Current-voltage characteristics and barrier parameters of Pd2Si/p-Si(111) Schottky diodes in a wide temperature range[J]. Semicond Sci Technol, 1995, 10: 1680.

[12]

Karatas S, Altindal S, Caskar M. Current transport in Zn/p-Si(100) Schottky barrier diodes at high temperatures[J]. Physica B, 2005, 357: 386.

[13]

Hackam R, Harrop P. Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes[J]. IEEE Trans Electron Devices, 1972, 19: 1231.

[14]

Bhuiyan A S, Martinez A, Esteve D. A new Richardson plot for non-ideal Schottky diodes[J]. Thin Solid Films, 1988, 161: 93.

[15]

Korucu D, Mammadov T S. Temperature-dependent current-conduction mechanisms in Au/n-InP Schottky barrier diodes(SBDs)[J]. J Optoelectron Adv Mater, 2012, 14: 41.

[16]

ATLAS user's manual, vo ls. 1-2[J]. Silvaco International, 2004.

[17]

Sze S M. Physics of semiconductor devices[J]. 2nd ed. New York:John Wiley and Sons, 1982.

[18]

Cheung S K, Cheung N W. Extraction of Schottky diode parameters from forward current-voltage characteristics[J]. Appl Phys Lett, 1986, 49: 85.

[19]

Cinar K, Yidium N, Coskun C. Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes[J]. J Appl Phys, 2009, 106: 073717.

[20]

Ejderha K, Zengin A, Orak I. Dependence of characteristic diode parameters on sample temperature in Ni/epitaxy n-Si contacts[J]. Mater Sci Semicond Proc, 2011, 14: 5.

[21]

Wilmsen C W. Physics and chemistry of Ⅲ-V compound semi-conductor interfaces[J]. New York:Plenum Press, 1985.

[22]

Werner J H, Guttler H H. Barrier inhomogeneities at Schottky contacts[J]. J Appl Phys, 1991, 69: 1522.

[23]

Zhu S Y, van Meirhaeghe R L, Detavernier C. Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si(100) and(111)[J]. Solid-State Electron, 2000, 44: 663.

[24]

Soylu M, Abay B. Barrier characteristics of gold Schottky contacts on moderately doped n-InP based on temperature dependent I-V and C-V measurements[J]. Microelectron Eng, 2009, 86: 88.

[25]

Cimilli F E, Saglam M, Efeoglu H. Temperature-dependent current voltage characteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height[J]. Physica B, 2009, 404: 1558.

[1]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[2]

Cheng Wei, Zhao Yan, Gao Hanchao, Chen Chen, Yang Naibin. High breakdown voltage InGaAs/InP double heterojunction bipolar transistors with fmax = 256 GHz and BVCEO = 8.3 V. J. Semicond., 2012, 33(1): 014004. doi: 10.1088/1674-4926/33/1/014004

[3]

V. M. Nikale, S. S. Shinde, C. H. Bhosale, K.Y. Rajpure. Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond., 2011, 32(3): 033001. doi: 10.1088/1674-4926/32/3/033001

[4]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[5]

Zhang Daoli, Zhang Jianbing, Wu Qiming, Yuan Lin, Chen Sheng. Synthesis and Spectral Properties of InP Colloidal Quantum Dots. J. Semicond., 2006, 27(7): 1213.

[6]

Qi Haitao, Feng Zhen, Li Yali, Zhang Xiongwen, Shang Yaohui, Guo Weilian. Fabrication of a High-Performance RTD on InP Substrate. J. Semicond., 2007, 28(12): 1945.

[7]

Lü Yanqiu, Yue Fangyu, Hong Xuekun, Chen Jiangfeng, Han Bing, Wu Xiaoli, Gong Haimei. Surface Damage and Removal of Ar+ Etched InGaAs,n-InP and p-InP. J. Semicond., 2007, 28(1): 122.

[8]

Miao Shanshan, Zhao Youwen, Dong Zhiyuan, Deng Aihong, Yang Jun, Wang Bo. Activation of Fe Doping and Electrical Compensation in Semi-Insulating InP. J. Semicond., 2006, 27(11): 1934.

[9]

Jin Zhi, Cheng Wei, Liu Xinyu, Xu Anhuai, Qi Ming. A Submicron InGaAs/InP Heterojunction Bipolar Transistor with ft of 238GHz. J. Semicond., 2008, 29(10): 1898.

[10]

Li Xianjie, Cai Daomin, Zhao Yonglin, Wang Quanshu, Zhou Zhou, Zeng Qingming. Design and Process for Self-Aligned InP/InGaAs SHBT Structure. J. Semicond., 2005, 26(S1): 136.

[11]

He Jia, Sun Lingling, Liu Jun. Agilent HBT Model Parameters Extraction Procedure For InP HBT’. J. Semicond., 2007, 28(S1): 443.

[12]

Su Shubing, Liu Xunchun, Liu Xinyu, Yu Jinyong, Wang Runmei, Xu Anhuai, Qi Ming. Performance of a Self-Aligned InP/GaInAs SHBT with a Novel T-Shaped Emitter. J. Semicond., 2006, 27(3): 434.

[13]

Wei Cheng, Yuan Wang, Yan Zhao, Haiyan Lu, Hanchao Gao, Naibin Yang. A THz InGaAs/InP double heterojunction bipolar transistor with fmax=325 GHz and BVCBO=10.6 V. J. Semicond., 2013, 34(5): 054006. doi: 10.1088/1674-4926/34/5/054006

[14]

Yu Jinyong, Liu Xinyu, Su Shubing, Wang Runmei, Xu Anhuai, Qi Ming. InP/InGaAs Heterojunction Bipolar Transistor with Base μ-Bridge and Emitter Air-Bridge. J. Semicond., 2007, 28(2): 154.

[15]

Cheng Wei, Jin Zhi, Liu Xinyu, Yu Jinyong, Xu Anhuai, Qi Ming. Ultra High-Speed InP/InGaAs SHBTs with ft of 210GHz. J. Semicond., 2008, 29(3): 414.

[16]

Zhong Yinghui, Wang Xiantai, Su Yongbo, Cao Yuxiong, Jin Zhi, Zhang Yuming, Liu Xinyu. An 88 nm gate-length In0.53Ga0.47As/In0.52Al0.48As InP-based HEMT with fmax of 201 GHz. J. Semicond., 2012, 33(7): 074004. doi: 10.1088/1674-4926/33/7/074004

[17]

Sun Niefeng, Mao Luhong, Guo Weilian, Zhou Xiaolong, Yang Ruixia, Zhang Weiyu, Sun Tongnian. Semi-Insulating Long InP Single Crystal Growth. J. Semicond., 2007, 28(S1): 186.

[18]

Pi Biao, Shu Yongchun, Lin Yaowang, Xu Bo, Yao Jianghong, Xing Xiaodong, Qu Shengchun, Wang Zhanguo. Growth Modes of InP Epilayers Grown by Solid Source Molecular Beam Epitaxy. J. Semicond., 2007, 28(S1): 28.

[19]

Wen Ruming, Sun Hao, Teng Teng, Li Lingyun, Sun Xiaowei. An InP-based heterodimensional Schottky diode for terahertz detection. J. Semicond., 2012, 33(10): 104001. doi: 10.1088/1674-4926/33/10/104001

[20]

Qi Ming, Xu Anhuai, Ai Likun, Sun Hao, Zhu Fuying. Growth and characterization of InP-based and phosphorous-involved materials for applications to HBTs by GSMBE were studied systematically. High quality 50ram InP-based HBT and 100mm InGaP/GaAs HBT epitaxial materials were obtained through optimizing the HBT structure design and the GSMBE growth condition. It is shown that the HBT devices and circuits with high performance can be achieved by using the epi-wafers grown by the GSMBE technology developed in this work.. J. Semicond., 2007, 28(S1): 182.

Search

Advanced Search >>

GET CITATION

K Zeghdar, L Dehimi, A Saadaune, N Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode[J]. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002.

Export: BibTex EndNote

Article Metrics

Article views: 751 Times PDF downloads: 20 Times Cited by: 0 Times

History

Manuscript received: 23 March 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误