[1] |
Yamasaki K, Asai K, Mizutani T.
Self-align implantation for n+-layer technology(SAINT) for high-speed GaAs ICs[J]. Electron Lett, 1982, 18: 119.
|
[2] |
Datta S, Dewey G, Fastenau J.
Ultrahigh-speed 0.5 V supply voltage In0.7Ga0.3As quantum-well transistors on silicon substrate[J]. IEEE Electron Device Lett, 2007, 28: 685.
|
[3] |
McMorrow D, Boos J B, Knudson A R.
Charge-collection characteristics of low-power ultrahigh speed, metamorphic AlSb/InAs high-electron mobility transistors(HEMTs)[J]. IEEE Trans Nucl Sci, 2000, 47: 2662.
|
[4] |
Del Alamo J A.
Nanometre-scale electronics with Ⅲ-V compound semiconductors[J]. Nature, 2011, 479: 317.
|
[5] |
Zhu S Y, Xu J P, Wang L S.
Compare of interfacial and electrical properties between Al2O3 and ZnO as interfacial passivation layer of GaAs MOS device with HfTiO gate dielectric[J]. Journal of Semiconductors, 2015, 36: 034006.
|
[6] |
Martens K, Wang W, De K K.
Impact of weak Fermi-level pinning on the correct interpretation of Ⅲ-V MOS CV and GV characteristics[J]. Microelectron Eng, 2007, 84: 2146.
|
[7] |
Liu C, Zhang Y M, Zhang Y M.
Interfacial characteristics of Al/Al2O3/ZnO/n-GaAs MOS capacitor[J]. Chin Phys B, 2013, 22: 076701.
|
[8] |
He G, Zhang L D, Liu M.
HfO2-GaAs metal-oxide-semiconductor capacitor using dimethylaluminumhydride-derived aluminum oxynitride interfacial passivation layer[J]. Appl Phys Lett, 2010, 97: 062908.
|
[9] |
Koveshnikov S, Tsai W, Ok I.
Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer[J]. Appl Phys Lett, 2006, 88: 022106.
|
[10] |
Wieder H.
Surface Fermi level of Ⅲ-V compound semiconductor-dielectric interfaces[J]. Surf Sci, 1983, 132: 390.
|
[11] |
Robertson J.
Model of interface states at Ⅲ-V oxide interfaces[J]. Appl Phys Lett, 2009, 94: 152104.
|
[12] |
Passlack M, Hong M J.
Quasistatic and high frequency capacitance-voltage characterization of Ga2O3-GaAs structures fabricated by in situ molecular beam epitaxy[J]. Appl Phys Lett, 1996, 68: 1099.
|
[13] |
He G, Chen X S, Sun Z Q.
Interface engineering and chemistry of Hf-based high-k dielectrics on Ⅲ-V substrates[J]. Surf Sci Rep, 2013, 68: 68.
|
[14] |
He G, Liu J W, Chen H S.
interface control and modification of band alignment and electrical properties of HfTiO/GaAs gate stacks by nitrogen incorporation[J]. J Mater Chem C, 2014, 2: 5299.
|
[15] |
Roy K, Mukhopadhyay S H.
Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits[J]. Proc IEEE, 2003, 91: 305.
|
[16] |
Gao T Q, Zhang C, Chi B Y.
Design and analysis of a highly-integrated CMOS power amplifier for RFID readers[J]. Journal of Semiconductors, 2009, 30: 065008.
|
[17] |
Li X, Cao Y, Hall D.
GaAs MOSFET using InAlP native oxide as gate dielectric[J]. IEEE Electron Device Lett, 2004, 25: 772.
|
[18] |
Lin H C, Wang W E, Brammertz G.
Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator[J]. Microelectron Eng, 2009, 86: 1554.
|
[19] |
Liu C, Zhang Y M, Zhang Y M.
Effect of atomic layer deposition growth temperature on the interfacial characteristics of HfO2/p-GaAs metal-oxide-semiconductor capacitors[J]. J Appl Phys, 2014, 116: 222207.
|
[20] |
Aguirre T F, Milojevic M, Choi K.
S passivation of GaAs and band bending reduction upon atomic layer deposition of HfO2/Al2O3 nanolaminates[J]. Appl Phys Lett, 2008, 93: 061907.
|
[21] |
Bhattacharya M, Mukherjee M, Sanyal M.
Energy dispersive X-ray reflectivity technique to study thermal properties of polymer films[J]. J Appl Phys, 2003, 94: 2882.
|
[22] |
Milojevic M, Aguirre T F, Hinkle C.
Half-cycle atomic layer deposition reaction studies of Al2O3 on In0.2Ga0.8As(100) surfaces[J]. Appl Phys Let, 2008(93): 202902.
|
[23] |
Hinkle C, Milojevic M, Brennan B.
Detection of Ga suboxides and their impact on Ⅲ-V passivation and Fermi-level pinning[J]. Appl Phys Lett, 2009, 94: 162101.
|
[24] |
Miki H, Kunitomo M, Furukawa R.
Leakage-current mechanism of a tantalum-pentoxide capacitor on rugged Si with a CVD-TiN plate electrode for high-density DRAMs[J]. Symposium VLSI Tech Dig, 1999: 99.
|
[25] |
Dumin D, Maddux J R.
Correlation of stress-induced leakage current in thin oxides with trap generation inside the oxides[J]. IEEE Trans Electron Devices, 1993, 40: 986.
|
[26] |
Lee H D, Feng T, Yu L.
Reduction of native oxides on GaAs during atomic layer growth of Al2O3[J]. Appl Phys Lett, 2009, 94: 222108.
|
[27] |
Oh H, Lin J, Lee S.
Study on interfacial properties of InGaAs and GaAs integrated with chemical-vapor-deposited high-k gate dielectrics using X-ray photoelectron spectroscopy[J]. Appl Phys Lett, 2008, 93: 062107.
|
[28] |
Dalapati G K, Tong Y, Loh W Y.
Electrical and interfacial characterization of atomic layer deposited high-k gate dielectrics on GaAs for advanced CMOS devices[J]. IEEE Trans Electron Devices, 2007, 54: 1831.
|
[29] |
Gilmer D, Hegde R, Cotton R.
Compatibility of polycrystalline silicon gate deposition with HfO2 and Al2O3/HfO2 gate dielectrics[J]. Appl Phys Lett, 2002, 81: 1288.
|
[30] |
Hackley J C, Demaree J D, Gougousi T.
Growth and interface of HfO2 films on H-terminated Si from a TDMAH and H2O atomic layer deposition process[J]. J Vac Sci Technol A, 2008, 26: 1235.
|
[31] |
Hinkle C, Sonnet A, Milojevic M.
Comparison of n-type and p-type GaAs oxide growth and its effects on frequency dispersion characteristics[J]. Appl Phys Lett, 2008, 93: 113506.
|
[32] |
Thurmond C, Schwartz G, Kammlott G.
GaAs oxidation and the Ga-As-O equilibrium phase diagram[J]. J Electrochem Soc, 1980, 127: 1366.
|