J. Semicond. > Volume 36 > Issue 12 > Article Number: 124004

An insulated gate bipolar transistor with surface n-type barrier

Mengxuan Jiang 1, , , Z. John Shen 1, , Jun Wang 1, , Zhikang Shuai 1, , Xin Yin 1, , Bingbing Sun 2, and Linyuan Liao 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This letter proposes a novel IGBT structure with an n-type barrier(NB-IGBT) formed on the silicon surface to enhance the conductivity modulation effect with a relatively simple fabrication process. TCAD simulation indicates that the NB-IGBT offers a current density 49% higher and turn-off losses 25% lower than a conventional field-stop IGBT(FS-IGBT) with a similar breakdown voltage, turn-off time and avalanche energy. Furthermore, the NB-IGBT exhibits extremely large transconductance, which is favorable to turn-on and turn-off. Therefore, the proposed IGBT offers an attractive option for high-voltage and large-power electronics applications.

Key words: breakdown voltageconductivity modulationcurrent densitylatch upIGBT

Abstract: This letter proposes a novel IGBT structure with an n-type barrier(NB-IGBT) formed on the silicon surface to enhance the conductivity modulation effect with a relatively simple fabrication process. TCAD simulation indicates that the NB-IGBT offers a current density 49% higher and turn-off losses 25% lower than a conventional field-stop IGBT(FS-IGBT) with a similar breakdown voltage, turn-off time and avalanche energy. Furthermore, the NB-IGBT exhibits extremely large transconductance, which is favorable to turn-on and turn-off. Therefore, the proposed IGBT offers an attractive option for high-voltage and large-power electronics applications.

Key words: breakdown voltageconductivity modulationcurrent densitylatch upIGBT



References:

[1]

Mori M, Oyama K, Arai T. A planar-gate high-conductivity IGBT(HiGT) with hole-barrier layer[J]. IEEE Trans Electron Device, 2007, 54(6): 1515.

[2]

Rahimo M, Lenzburg , Kopta A. Novel enhanced-planar IGBT technology rated up to 6.5 kV for lower losses and higher SOA capability[J]. Proc ISPSD, 2006, 1.

[3]

Kitagawa M, Kawasaki , Omura I. A 4500 V injection enhanced insulated gate bipolar transistor(IEGT) operating in a mode similar to a thyristor[J]. IEDM, 1993: 679.

[4]

Nakagawa A. Theoretical investigation of silicon limit characteristics of IGBT[J]. Proc ISPSD, 2000: 5.

[5]

Sumitomo M, Sakane H, Arakawa K. Low loss IGBT with partially narrow mesa structure(PNM-IGBT)[J]. Proc ISPSD, 2012: 17.

[6]

Jiang M X, Yin X, Shuai Z K. An insulated gate bipolar transistor with a collector trench electron extraction channel[J]. IEEE Electron Device Lett, 2015, 36(9): 935.

[7]

Kyoung S, Lee J S, Kwak S H. A novel trench IGBT with a deep p plus layer beneath the trench emitter[J]. IEEE Electron Device Lett, 2009, 30: 82.

[8]

Gejo R, Ogura T, Nakamura K. Ideal carrier profile control for high-speed switching of 1200 V IGBTs[J]. Proc ISPSD, 2014: 99.

[9]

Takahashi H, Yamamoto A, Aono S. 1200 V reverse conducting IGBT[J]. Proc ISPSD, 2004: 133.

[10]

Suekawa E, Tomomatsu Y, Enjoji T. High voltage IGBT(HV-IGBT) having P+/P- collector region[J]. Proc ISPSD, 1998: 249.

[11]

Nakamura K, Kusunoki S, Nakamura H. Advanced wide cell pitch CSTBTs having light punch-through(LPT) structure[J]. Proc ISPSD, 2002: 277.

[12]

Haraguchi Y, Honda S, Nakata K. 600 V LPT-CSTBT on advanced thin wafer technology[J]. Proc ISPSD, 2011: 68.

[13]

Tu S L, Tam G, Tam P. Analysis of direct wafer bond IGBTs with heavily doped n+ buffer layer[J]. Proc ISPSD, 1996: 339.

[14]

Antoniou M, Udrea F, Bauer F. The soft punchthrough+ superjunction insulated gate bipolar transistor:a high speed structure with enhanced electron injection[J]. IEEE Trans Electron Devices, 2011, 58: 769.

[15]

Jiang H P, Zhang B, Chen W J. A snapback suppressed reverse-conducting IGBT with a floating p-region in trench collector[J]. IEEE Electron Device Lett, 2012, 33: 417.

[16]

Chen Weizhong, Zhang Bo, Li Zehong. A new short-anoded IGBT with high emission efficiency[J]. Journal of Semiconductors, 2012, 33(11): 114003.

[17]

Ye Jun, Fu Daping, Luo Bo. A novel TFS-IGBT with a super junction floating layer[J]. Journal of Semiconductors, 2010, 31(11): 114008.

[18]

Ma Rongyao, Li Zehong, Hong Xin. Carrier stored trench-gate bipolar transistor with p-floating layer[J]. Journal of Semiconductors, 2010, 31(2): 024004.

[19]

Qian Mengliang, Li Zehong, Zhang Bo. Insulated gate bipolar transistor with trench gate structure of accumulation channel[J]. Journal of Semiconductors, 2010, 31(3): 034002.

[20]

Khanna V K. The insulated gate bipolar transistor theory and design[J]. New York:John Wiley & Sons, 2003.

[21]

Baliga B J. Fundamentals of power semiconductor devices[J]. New York:Springer, 2008.

[1]

Mori M, Oyama K, Arai T. A planar-gate high-conductivity IGBT(HiGT) with hole-barrier layer[J]. IEEE Trans Electron Device, 2007, 54(6): 1515.

[2]

Rahimo M, Lenzburg , Kopta A. Novel enhanced-planar IGBT technology rated up to 6.5 kV for lower losses and higher SOA capability[J]. Proc ISPSD, 2006, 1.

[3]

Kitagawa M, Kawasaki , Omura I. A 4500 V injection enhanced insulated gate bipolar transistor(IEGT) operating in a mode similar to a thyristor[J]. IEDM, 1993: 679.

[4]

Nakagawa A. Theoretical investigation of silicon limit characteristics of IGBT[J]. Proc ISPSD, 2000: 5.

[5]

Sumitomo M, Sakane H, Arakawa K. Low loss IGBT with partially narrow mesa structure(PNM-IGBT)[J]. Proc ISPSD, 2012: 17.

[6]

Jiang M X, Yin X, Shuai Z K. An insulated gate bipolar transistor with a collector trench electron extraction channel[J]. IEEE Electron Device Lett, 2015, 36(9): 935.

[7]

Kyoung S, Lee J S, Kwak S H. A novel trench IGBT with a deep p plus layer beneath the trench emitter[J]. IEEE Electron Device Lett, 2009, 30: 82.

[8]

Gejo R, Ogura T, Nakamura K. Ideal carrier profile control for high-speed switching of 1200 V IGBTs[J]. Proc ISPSD, 2014: 99.

[9]

Takahashi H, Yamamoto A, Aono S. 1200 V reverse conducting IGBT[J]. Proc ISPSD, 2004: 133.

[10]

Suekawa E, Tomomatsu Y, Enjoji T. High voltage IGBT(HV-IGBT) having P+/P- collector region[J]. Proc ISPSD, 1998: 249.

[11]

Nakamura K, Kusunoki S, Nakamura H. Advanced wide cell pitch CSTBTs having light punch-through(LPT) structure[J]. Proc ISPSD, 2002: 277.

[12]

Haraguchi Y, Honda S, Nakata K. 600 V LPT-CSTBT on advanced thin wafer technology[J]. Proc ISPSD, 2011: 68.

[13]

Tu S L, Tam G, Tam P. Analysis of direct wafer bond IGBTs with heavily doped n+ buffer layer[J]. Proc ISPSD, 1996: 339.

[14]

Antoniou M, Udrea F, Bauer F. The soft punchthrough+ superjunction insulated gate bipolar transistor:a high speed structure with enhanced electron injection[J]. IEEE Trans Electron Devices, 2011, 58: 769.

[15]

Jiang H P, Zhang B, Chen W J. A snapback suppressed reverse-conducting IGBT with a floating p-region in trench collector[J]. IEEE Electron Device Lett, 2012, 33: 417.

[16]

Chen Weizhong, Zhang Bo, Li Zehong. A new short-anoded IGBT with high emission efficiency[J]. Journal of Semiconductors, 2012, 33(11): 114003.

[17]

Ye Jun, Fu Daping, Luo Bo. A novel TFS-IGBT with a super junction floating layer[J]. Journal of Semiconductors, 2010, 31(11): 114008.

[18]

Ma Rongyao, Li Zehong, Hong Xin. Carrier stored trench-gate bipolar transistor with p-floating layer[J]. Journal of Semiconductors, 2010, 31(2): 024004.

[19]

Qian Mengliang, Li Zehong, Zhang Bo. Insulated gate bipolar transistor with trench gate structure of accumulation channel[J]. Journal of Semiconductors, 2010, 31(3): 034002.

[20]

Khanna V K. The insulated gate bipolar transistor theory and design[J]. New York:John Wiley & Sons, 2003.

[21]

Baliga B J. Fundamentals of power semiconductor devices[J]. New York:Springer, 2008.

[1]

Mengxuan Jiang, Z. John Shen, Jun Wang, Xin Yin, Zhikang Shuai, Jiang Lu. A high-conductivity insulated gate bipolar transistor with Schottky hole barrier contact. J. Semicond., 2016, 37(2): 024011. doi: 10.1088/1674-4926/37/2/024011

[2]

Ye Jun, Fu Daping, Luo Bo, Zhao Yuanyuan, Qiao Ming, Zhang Bo. A novel TFS-IGBT with a super junction floating layer. J. Semicond., 2010, 31(11): 114008. doi: 10.1088/1674-4926/31/11/114008

[3]

Fang Jian, Wu Chao, Qiao Ming, Zhang Bo, Li Zhaoji. A Dynamic-State Model of an NPT-IGBT with Localized Lifetime Control. J. Semicond., 2006, 27(6): 1078.

[4]

Chong Wang, Chong Chen, Yunlong He, Xuefeng Zheng, Xiaohua Ma, Jincheng Zhang, Wei Mao, Yue Hao. Breakdown voltage and current collapse of F-plasma treated AlGaN/GaN HEMTs. J. Semicond., 2014, 35(1): 014008. doi: 10.1088/1674-4926/35/1/014008

[5]

Weili Chu, Yangjun Zhu, Jie Zhang, Aibin Hu. SPT+-IGBT characteristics and optimization. J. Semicond., 2013, 34(1): 014005. doi: 10.1088/1674-4926/34/1/014005

[6]

Wang Guozheng, Chen Li, Qin Xulei, Wang Ji, Wang Yang, Fu Shencheng, Duanmu Qingduo. Influence of etching current density on the morphology of macroporous silicon arrays by photo-electrochemical etching. J. Semicond., 2010, 31(7): 074011. doi: 10.1088/1674-4926/31/7/074011

[7]

Xiaolei Yang, Yonghong Tao, Tongtong Yang, Runhua Huang, Bai Song. Fabrication of 4H-SiC n-channel IGBTs with ultra high blocking voltage. J. Semicond., 2018, 39(3): 034005. doi: 10.1088/1674-4926/39/3/034005

[8]

Wang Bo, Tan Jingfei, Zhang Wenliang, Chu Weili, Zhu Yangjun. A simulation study on a novel trench SJ IGBT. J. Semicond., 2012, 33(11): 114002. doi: 10.1088/1674-4926/33/11/114002

[9]

Qingyun Dai, Xiaoli Tian, Wenliang Zhang, Shuojin Lu, Yangjun Zhu. 4500 V SPT+ IGBT optimization on static and dynamic losses. J. Semicond., 2015, 36(9): 094007. doi: 10.1088/1674-4926/36/9/094007

[10]

Qing Hua, Zehong Li, Bo Zhang, Xiangjun Huang, Dekai Cheng. Analysis of the dV/dt effect on an IGBT gate circuit in IPM. J. Semicond., 2013, 34(4): 045001. doi: 10.1088/1674-4926/34/4/045001

[11]

Miao Qinghai, Zhu Yangjun, Zhang Xinghua, Lu Shuojin. Excessive Thermotaxis Effect of Low Current in pn Junction and Theoretical Analog Calculation. J. Semicond., 2006, 27(9): 1595.

[12]

Zhu Yangjun, Miao Qinghai, Zhang Xinghua, Lu Shuojin. Verification of the Excessive Thermotaxis Effect of Low Current Based on Actual Junction Temperature Distribution. J. Semicond., 2007, 28(7): 1112.

[13]

Xudong Chen, Jianbing Cheng, Guobing Teng, Houdong Guo. Novel trench gate field stop IGBT with trench shorted anode. J. Semicond., 2016, 37(5): 054008. doi: 10.1088/1674-4926/37/5/054008

[14]

Qiao Ming, Zhou Xianda, Duan Mingwei, Fang Jian, Zhang Bo, Li Zhaoji. Breakdown Characteristic of Multiregion Double RESURF LDMOS with High Voltage Interconnection. J. Semicond., 2007, 28(9): 1428.

[15]

Duan Baoxing, Zhang Bo, Li Zhaoji. Breakdown Voltage Analysis for a Double Step Buried Oxide SOI Structure. J. Semicond., 2006, 27(5): 886.

[16]

Li Qi, Zhu Jinluan, Wang Weidong, Yue Hongwei, Jin Liangnian. A novel high-voltage device structure with an N+ ring in substrate and the breakdown voltage model. J. Semicond., 2011, 32(12): 124005. doi: 10.1088/1674-4926/32/12/124005

[17]

Yang Liu, Changchun Chai, Chunlei Shi, Qingyang Fan, Yuqian Liu. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor. J. Semicond., 2016, 37(12): 124002. doi: 10.1088/1674-4926/37/12/124002

[18]

Chen Wanjun, Zhang Bo, Li Zhaoji. Realizing High Breakdown Voltage SJ-LDMOS on Bulk Silicon Using a Partial n-Buried Layer. J. Semicond., 2007, 28(3): 355.

[19]

Zhang Wenmin, Zhang Wei, Fu Jun, Wang Yudong. An analytical model for the drain-source breakdown voltage of RF LDMOS power transistors with a Faraday shield. J. Semicond., 2012, 33(4): 044001. doi: 10.1088/1674-4926/33/4/044001

[20]

Lu Shengli, Sun Zhilin, Sun Weifeng, Shi Longxing. A High Breakdown Voltage Thin SOI Device with a Vertically Linearly Graded Concentration Drift Region. J. Semicond., 2005, 26(12): 2286.

Search

Advanced Search >>

GET CITATION

M X Jiang, Z. John Shen, J Wang, Z K Shuai, X Yin, B B Sun, L Y Liao. An insulated gate bipolar transistor with surface n-type barrier[J]. J. Semicond., 2015, 36(12): 124004. doi: 10.1088/1674-4926/36/12/124004.

Export: BibTex EndNote

Article Metrics

Article views: 1389 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 04 August 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误