J. Semicond. > Volume 36 > Issue 2 > Article Number: 023001

Oriented colloidal-crystal thin films of polystyrene spheres via spin coating

S. S. Shinde and S. Park

+ Author Affilications + Find other works by these authors

PDF

Abstract: We developed a simple and inexpensive synthesis of a large-scale close-packed monolayer of polystyrene sphere arrays, which have a variety of applications. The influence of three step spin speeds, spinning time, solution quantity and relative humidity is studied in order to achieve a large area close-packed monolayer. A relatively high surface coverage and uniform monolayer of PS spheres in the range of 85%—90% are achieved by appropriate control of the preparative parameters. Also the effect of the oxygen plasma etching process on the reduction of PS spheres has been studied. We conclude that it can be useful in industrial applications, because of the fabrication speed, surface coverage, control over PS spheres and cost of the process.

Key words: monolayerPS spheresoxygen plasma

Abstract: We developed a simple and inexpensive synthesis of a large-scale close-packed monolayer of polystyrene sphere arrays, which have a variety of applications. The influence of three step spin speeds, spinning time, solution quantity and relative humidity is studied in order to achieve a large area close-packed monolayer. A relatively high surface coverage and uniform monolayer of PS spheres in the range of 85%—90% are achieved by appropriate control of the preparative parameters. Also the effect of the oxygen plasma etching process on the reduction of PS spheres has been studied. We conclude that it can be useful in industrial applications, because of the fabrication speed, surface coverage, control over PS spheres and cost of the process.

Key words: monolayerPS spheresoxygen plasma



References:

[1]

Baksh M M, Jaros M, Groves J T. Detection of molecular interactions at membrane surfaces through colloid phase transitions[J]. Nature, 2004, 427: 139.

[2]

Zhang J H, Li Y F, Zhang X M. Colloidal selfassembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays[J]. Adv Mater, 2010, 22: 4249.

[3]

Sun S H, Murray C B, Weller D. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287: 1989.

[4]

Marlow F, Muldarisnur , Sharifi P. Opals: status and prospects[J]. Angew Chem Int Ed, 2009, 48: 6212.

[5]

Vogel N, Jung M, Bocchio N L. Reusable localized surface plasmon sensors based on ultrastable nanostructures[J]. Small, 2010, 6: 104.

[6]

Tan K W, Saba S A, Arora H. Colloidal self-assembly-directed laser-induced non-close-packed crystalline silicon nanostructures[J]. ACS Nano, 2011, 5: 7960.

[7]

Kelzenberg M D, Boettcher S W, Petykiewicz J A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications[J]. Nat Mater, 2010, 9: 239.

[8]

Huang X G, Zhou J, Fu M. Binary colloidal crystals with a wide range of size ratios via template-assisted electric-field-induced assembly[J]. Langmuir, 2007, 23: 8695.

[9]

Hsu C, Connor S T, Tang M. Wafer-scale silicon nanopillars and nanocones by Langmuir—Blodgett assembly and etching[J]. Appl Phys Lett, 2008, 93: 133109.

[10]

Singh G, Pillai S, Arpanaei A. Layer-by-layer growth of multicomponent colloidal crystals over large areas[J]. Adv Funct Mater, 2011, 21: 2556.

[11]

Vogel N, de Viguerie L, Jonas U. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries[J]. Adv Funct Mater, 2011, 21: 3064.

[12]

Geim A K, Dubonos S V, Grigorieva I V. Microfabricated adhesive mimicking gecko foot-hair[J]. Nat Mater, 2003, 2: 461.

[13]

Lu Z X, Namboodiri A, Collinson M M. Self-supporting nanopore membranes with controlled pore size and shape[J]. ACS Nano, 2008, 2: 993.

[14]

Hulteen J C, Vanduyne R P. Nanosphere lithography——a material general fabrication process for periodic particle array surfaces[J]. J Vac Sci Technol, 1995.

[15]

Dimitrov A S, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces[J]. Langmuir, 1996, 12: 1303.

[16]

Deckman H W, Dunsmuir J H, Garoff S. Macromolecular self-organized assemblies[J]. J Vac Sci Technol B, 1988, 6: 333.

[1]

Baksh M M, Jaros M, Groves J T. Detection of molecular interactions at membrane surfaces through colloid phase transitions[J]. Nature, 2004, 427: 139.

[2]

Zhang J H, Li Y F, Zhang X M. Colloidal selfassembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays[J]. Adv Mater, 2010, 22: 4249.

[3]

Sun S H, Murray C B, Weller D. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287: 1989.

[4]

Marlow F, Muldarisnur , Sharifi P. Opals: status and prospects[J]. Angew Chem Int Ed, 2009, 48: 6212.

[5]

Vogel N, Jung M, Bocchio N L. Reusable localized surface plasmon sensors based on ultrastable nanostructures[J]. Small, 2010, 6: 104.

[6]

Tan K W, Saba S A, Arora H. Colloidal self-assembly-directed laser-induced non-close-packed crystalline silicon nanostructures[J]. ACS Nano, 2011, 5: 7960.

[7]

Kelzenberg M D, Boettcher S W, Petykiewicz J A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications[J]. Nat Mater, 2010, 9: 239.

[8]

Huang X G, Zhou J, Fu M. Binary colloidal crystals with a wide range of size ratios via template-assisted electric-field-induced assembly[J]. Langmuir, 2007, 23: 8695.

[9]

Hsu C, Connor S T, Tang M. Wafer-scale silicon nanopillars and nanocones by Langmuir—Blodgett assembly and etching[J]. Appl Phys Lett, 2008, 93: 133109.

[10]

Singh G, Pillai S, Arpanaei A. Layer-by-layer growth of multicomponent colloidal crystals over large areas[J]. Adv Funct Mater, 2011, 21: 2556.

[11]

Vogel N, de Viguerie L, Jonas U. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries[J]. Adv Funct Mater, 2011, 21: 3064.

[12]

Geim A K, Dubonos S V, Grigorieva I V. Microfabricated adhesive mimicking gecko foot-hair[J]. Nat Mater, 2003, 2: 461.

[13]

Lu Z X, Namboodiri A, Collinson M M. Self-supporting nanopore membranes with controlled pore size and shape[J]. ACS Nano, 2008, 2: 993.

[14]

Hulteen J C, Vanduyne R P. Nanosphere lithography——a material general fabrication process for periodic particle array surfaces[J]. J Vac Sci Technol, 1995.

[15]

Dimitrov A S, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces[J]. Langmuir, 1996, 12: 1303.

[16]

Deckman H W, Dunsmuir J H, Garoff S. Macromolecular self-organized assemblies[J]. J Vac Sci Technol B, 1988, 6: 333.

[1]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[2]

S. S. Shinde, S. Park, J. Shin. Spin synthesis of monolayer of SiO2 thin films. J. Semicond., 2015, 36(4): 043002. doi: 10.1088/1674-4926/36/4/043002

[3]

Yinying Li, Xiaoming Wu, Huaqiang Wu, He Qian. Redistribution of carbon atoms in Pt substrate for high quality monolayer graphene synthesis. J. Semicond., 2015, 36(1): 013005. doi: 10.1088/1674-4926/36/1/013005

[4]

Jun Zhang. Single photon-chiral phonon entanglement in monolayer WSe2. J. Semicond., 2019, 40(7): 070404. doi: 10.1088/1674-4926/40/7/070404

[5]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[6]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[7]

Zhefeng Li, Xianye Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004

[8]

Huajun Chen, Changzhao Chen, Yang Li, Xianwen Fang. Monolayer-molybdenum-disulfide-based nano-optomechanical transistor andewline tunable nonlinear responses. J. Semicond., 2016, 37(11): 114004. doi: 10.1088/1674-4926/37/11/114004

[9]

Yuanfang Yu, Zhenzhen Li, Wenhui Wang, Xitao Guo, Jie Jiang, Haiyan Nan, Zhenhua Ni. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. J. Semicond., 2017, 38(3): 033003. doi: 10.1088/1674-4926/38/3/033003

[10]

Zhao Bo, Li Qingshan, Zhang Ning, Chen Da, Zheng Xuegang. Optical and Electrical Properties of ZnO/PS Heterostructure. J. Semicond., 2006, 27(7): 1217.

[11]

Meng Gong, Yanan Chen, Wancheng Yu, Peng Jin, Zhanguo Wang, Zhimin Wang, Shenjin Zhang, Feng Yang, Fengfeng Zhang, Qinjun Peng, Zuyan Xu. The effect of oxygen on the epitaxial growth of diamond. J. Semicond., 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004

[12]

Suo Fan, Yu Junsheng, Deng Jing, Lou Shuangling, Jiang Yadong. Organic Electroluminescent Characteristics of Compound PS∶NPBHole Transporting Layer. J. Semicond., 2007, 28(8): 1232.

[13]

Hao Wang, Siyang Liu, Weifeng Sun, Tingting Huang. Research and optimization of the ESD response characteristic in a ps-LDMOS transistor. J. Semicond., 2014, 35(1): 014010. doi: 10.1088/1674-4926/35/1/014010

[14]

Wang Caifeng, Li Qingshan, Qi Hongxia, Zhao Bo, Lü Lei, Zhang Lichun. White Light Emission from the Composite System of ZnS/PS. J. Semicond., 2007, 28(S1): 119.

[15]

Xi Tianzuo, Huang Lu, Zheng Zhong, Feng Lisong. A 3–5 GHz CMOS UWB power amplifier with ±8 ps group delay ripple. J. Semicond., 2010, 31(4): 045005. doi: 10.1088/1674-4926/31/4/045005

[16]

Li Feng, Gu Shulin, Ye Jiandong, Zhu Shunming, Zhang Rong, Zheng Youdou. Effects of Oxygen Source Ionization on the Growth and Properties of MOCVD ZnO Material. J. Semicond., 2007, 28(3): 430.

[17]

Sun Shilong, , Liu Caichi, Hao Qiuyan, Teng Xiaoyun, Zhao Liwei, Zhao Yanqiao, Wang Lijian. Effect of Rapid Thermal Process on Oxygen Precipitatesin Heavily As-Doped Wafer. J. Semicond., 2006, 27(S1): 165.

[18]

Jiang Huihua, Yang Deren, Tian Daxi, Ma Xiangyang, Li Liben, Que Duanlin. Effects of Germanium on Oxygen Precipitation in Heavily Boron-Doped Czochralski Silicon. J. Semicond., 2005, 26(11): 2107.

[19]

Jiang Ran, Zhang Yan. Observation of ferromagnetism in highly oxygen-deficient HfO2 films. J. Semicond., 2009, 30(10): 102002. doi: 10.1088/1674-4926/30/10/102002

[20]

Da Chen, Shihua Huang, Lü He. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film. J. Semicond., 2017, 38(4): 043002. doi: 10.1088/1674-4926/38/4/043002

Search

Advanced Search >>

GET CITATION

S. S. Shinde, S. Park. Oriented colloidal-crystal thin films of polystyrene spheres via spin coating[J]. J. Semicond., 2015, 36(2): 023001. doi: 10.1088/1674-4926/36/2/023001.

Export: BibTex EndNote

Article Metrics

Article views: 1178 Times PDF downloads: 22 Times Cited by: 0 Times

History

Manuscript received: 02 September 2014 Manuscript revised: Online: Published: 01 February 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误