J. Semicond. > Volume 36 > Issue 2 > Article Number: 023003

Electronic structures and phase transition characters of β-, P61-, P62- and δ-Si3N4 under extreme conditions: a density functional theory study

Dong Chen , , Yuping Cang and Yongsong Luo

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper describes the results of structural, electronic and elastic properties of silicon nitride (in its high-pressure P61 and P62 phases) through the first-principles calculation combined with an ultra-soft pseudo-potential. The computed equilibrium lattice constants agree well with the experimental data and the theoretical results. The strongest chemical bond (N--Si bond) shows a covalent nature with a little weaker ionic character. P61-Si3N4 is more stable than P62-Si3N4 due mainly to the fact that the shorter N--Si bond in the P61 phase allows stronger electron hybridizations. We have also predicted the phase stability of Si3N4 using the quasi-harmonic approximation, in which the lattice vibration and phonon effect are both considered. The results show that the β → P61 phase transition is very likely to occur at 42.9 GPa and 300 K. The reason why the β → P61 → δ phase transitions had never been observed is also discussed.

Key words: phase transitionbond lengthselastic constantsdensity functional theory

Abstract: This paper describes the results of structural, electronic and elastic properties of silicon nitride (in its high-pressure P61 and P62 phases) through the first-principles calculation combined with an ultra-soft pseudo-potential. The computed equilibrium lattice constants agree well with the experimental data and the theoretical results. The strongest chemical bond (N--Si bond) shows a covalent nature with a little weaker ionic character. P61-Si3N4 is more stable than P62-Si3N4 due mainly to the fact that the shorter N--Si bond in the P61 phase allows stronger electron hybridizations. We have also predicted the phase stability of Si3N4 using the quasi-harmonic approximation, in which the lattice vibration and phonon effect are both considered. The results show that the β → P61 phase transition is very likely to occur at 42.9 GPa and 300 K. The reason why the β → P61 → δ phase transitions had never been observed is also discussed.

Key words: phase transitionbond lengthselastic constantsdensity functional theory



References:

[1]

Chen J Y, Guo Y L, Wen Y G. Graphene: two stage metal catalyst free growth of high quality polycrystalline graphene films on silicon nitride substrates[J]. Adv Mater, 2013, 25(7): 938.

[2]

Boyko T D, Hunt A, Zerr A. Electronic structure of spineltype nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps: application to light emitting diodes[J]. Phys Rev Lett, 2013, 111(9): 097402.

[3]

Liu Y X, Davanco M, Aksyuk V. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators[J]. Phys Rev Lett, 2013, 110(22): 223603.

[4]

Swift G A, Üstündag E, Clausen B. High-temperature elastic properties of in situ-reinforced Si3N4[J]. Appl Phys Lett, 2003, 82(7): 1039.

[5]

Kocer C, Hirosaki N, Ogata S. Ab initio calculation of the ideal tensile and shear strength of cubic silicon nitride[J]. Phys Rev B, 2003, 67(3): 035210.

[6]

Zerr A, Miehe G, Serghiou G. Synthesis of cubic silicon nitride[J]. Nature (London), 1999, 400(7): 340.

[7]

Kroll P, von Appen J. Post-spinel phases of silicon nitride[J]. Phys Status Solidi B, 2001, 226(1).

[8]

Kroll P. Pathways to metastable nitride structures[J]. J Solid State Chem, 2003, 176(2): 530.

[9]

Ching W Y, Mo S D, Ouyang L Z. Theoretical prediction of the structure and properties of cubic spinel nitrides[J]. J Am Ceram Soc, 2002, 85(1): 75.

[10]

Danilenko N V, Oleinik G S, Dobrovol’skii V D. Microstructural features of the α→β transformation in silicon nitride at high pressures and temperatures[J]. Sov Powder Metal Met Ceram, 1992, 31(12): 1035.

[11]

Lee D D, Kang S J L, Petzow G. Effect of α to β (β’) phase transition on the sintering of silicon nitride ceramics[J]. J Am Ceram Soc, 1990, 73(3): 767.

[12]

Jiang J Z, Kragh F, Frost D J. Hardness and thermal stability of cubic silicon nitride[J]. J Phys: Condens Matter, 2001, 13(22).

[13]

Kuwabara A, Matsunaga K, Tanaka I. Lattice dynamics and thermodynamical properties of silicon nitride polymorphs[J]. Phys Rev B, 2008, 78(6): 064104.

[14]

Xu B, Dong J J, McMillan P F. Equilibrium and metastable phase transitions in silicon nitride at high pressure: a firstprinciples and experimental study[J]. Phys Rev B, 2011, 84(1): 014113.

[15]

Togo A, Kroll P. First-principles lattice dynamics calculations of the phase boundary between β-Si3N4 and c-Si3N4 at elevated temperatures and pressure[J]. J Comput Chem, 2008, 29(13): 2255.

[16]

He H L, Sekine T, Kobayashi T. Shock-induced phase transition of β-Si3N4 to c-Si3N4[J]. Phys Rev B, 2000, 62(17): 11412.

[17]

Tatsumi K, Tanaka I, Adachi H. Theoretical prediction of postspinel phases of silicon nitride[J]. J Am Ceram Soc, 2002, 85(1): 7.

[18]

Anatole von Lilienfeld O, Tavernelli I, Rothlisberger U. Optimization of effective atom centered potentials for London dispersion forces in density functional theory[J]. Phys Rev Lett, 2004, 93(15): 153004.

[19]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A).

[20]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865.

[21]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188.

[22]

Pfrommer B G, Côté M, Louie S G. Relaxation of crystals with the quasi-Newton method[J]. J Comput Phys, 1997, 131(1): 233.

[23]

Blanco M A, Francisco E, Luaña V. Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasiharmonic Debye model[J]. Comput Phys Commun, 2004, 158(1): 57.

[24]

Otero-de-la-Roza A, Abbasi-Pérez D, Lua~na V. Lua~na V. Gibbs2: a new version of the quasi-harmonic model code. II. models for solidstate thermodynamics, features and implementation[J]. Comput Phys Commun, 2011, 182: 10-2232.

[25]

Yu B H, Chen D. Phase transition character and thermodynamic modeling of the P6 and P6' hexagonal Si–N system supplemented by first-principles calculations[J]. J Alloys Compd, 2013, 581: 747.

[26]

Ching W Y, Ouyang L Z, Gale J D. Full ab initio geometry optimization of all known crystalline phases of Si3N4[J]. Phys Rev B, 2000, 61(13): 8696.

[27]

Yashima M, Ando Y, Tabira Y. Crystal structure and electron density of β-silicon nitride: experimental and theoretical evidence for the covalent bonding and charge transfer[J]. Organ Chem, 2007, 38(28): 28003.

[28]

Priest H P, Burns F C, Priest G L. Oxygen content of alpha silicon nitride[J]. J Am Ceram Soc, 1973, 56(7): 395.

[29]

Hirosaki N, Ogata S, Kocer C. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal β- and α-Si3N4[J]. Phys Rev B, 2002, 65(13): 134110.

[30]

Ching W Y, Xu Y N, Gale J D. Ab initio total energy calculation of β- and α-silicon nitride and the derivation of effective pair potentials with application to lattice dynamics[J]. J Am Ceram Soc, 1998, 81(12): 3189.

[31]

Born M, Huang K. Dynamical theory of crystal lattices[J]. Oxford: Clarendon, 1956.

[32]

Ventelon L, Willaime F, Clouet E. Ab initio investigation of the Peierls potential of screw dislocations in bcc Fe and W[J]. Acta Mater, 2013, 61(11): 3973.

[33]

Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions[J]. J Chem Phys, 1955, 23(10): 1833.

[34]

Ren S Y, Ching W Y. Electronic structures of α- and β-silicon nitride[J]. Phys Rev B, 1981, 23(10): 5454.

[35]

Oh J W, Kim C Y, Nahm K S. The hydriding kinetics of LaNi4.5AL0.5 with hydrogen[J]. J Alloys Compd, 1998, 278(1/2): 270.

[36]

He J L, Wu E D, Wang H T. Ionicties of boron–boron bonds in B12 icosahedra[J]. Phys Rev Lett, 2005, 94(1): 015504.

[37]

Ching W Y, Mo S D, Ouyang L Z. Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and c-GeSi2N4[J]. Phys Rev B, 2001, 62(24): 245110.

[1]

Chen J Y, Guo Y L, Wen Y G. Graphene: two stage metal catalyst free growth of high quality polycrystalline graphene films on silicon nitride substrates[J]. Adv Mater, 2013, 25(7): 938.

[2]

Boyko T D, Hunt A, Zerr A. Electronic structure of spineltype nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps: application to light emitting diodes[J]. Phys Rev Lett, 2013, 111(9): 097402.

[3]

Liu Y X, Davanco M, Aksyuk V. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators[J]. Phys Rev Lett, 2013, 110(22): 223603.

[4]

Swift G A, Üstündag E, Clausen B. High-temperature elastic properties of in situ-reinforced Si3N4[J]. Appl Phys Lett, 2003, 82(7): 1039.

[5]

Kocer C, Hirosaki N, Ogata S. Ab initio calculation of the ideal tensile and shear strength of cubic silicon nitride[J]. Phys Rev B, 2003, 67(3): 035210.

[6]

Zerr A, Miehe G, Serghiou G. Synthesis of cubic silicon nitride[J]. Nature (London), 1999, 400(7): 340.

[7]

Kroll P, von Appen J. Post-spinel phases of silicon nitride[J]. Phys Status Solidi B, 2001, 226(1).

[8]

Kroll P. Pathways to metastable nitride structures[J]. J Solid State Chem, 2003, 176(2): 530.

[9]

Ching W Y, Mo S D, Ouyang L Z. Theoretical prediction of the structure and properties of cubic spinel nitrides[J]. J Am Ceram Soc, 2002, 85(1): 75.

[10]

Danilenko N V, Oleinik G S, Dobrovol’skii V D. Microstructural features of the α→β transformation in silicon nitride at high pressures and temperatures[J]. Sov Powder Metal Met Ceram, 1992, 31(12): 1035.

[11]

Lee D D, Kang S J L, Petzow G. Effect of α to β (β’) phase transition on the sintering of silicon nitride ceramics[J]. J Am Ceram Soc, 1990, 73(3): 767.

[12]

Jiang J Z, Kragh F, Frost D J. Hardness and thermal stability of cubic silicon nitride[J]. J Phys: Condens Matter, 2001, 13(22).

[13]

Kuwabara A, Matsunaga K, Tanaka I. Lattice dynamics and thermodynamical properties of silicon nitride polymorphs[J]. Phys Rev B, 2008, 78(6): 064104.

[14]

Xu B, Dong J J, McMillan P F. Equilibrium and metastable phase transitions in silicon nitride at high pressure: a firstprinciples and experimental study[J]. Phys Rev B, 2011, 84(1): 014113.

[15]

Togo A, Kroll P. First-principles lattice dynamics calculations of the phase boundary between β-Si3N4 and c-Si3N4 at elevated temperatures and pressure[J]. J Comput Chem, 2008, 29(13): 2255.

[16]

He H L, Sekine T, Kobayashi T. Shock-induced phase transition of β-Si3N4 to c-Si3N4[J]. Phys Rev B, 2000, 62(17): 11412.

[17]

Tatsumi K, Tanaka I, Adachi H. Theoretical prediction of postspinel phases of silicon nitride[J]. J Am Ceram Soc, 2002, 85(1): 7.

[18]

Anatole von Lilienfeld O, Tavernelli I, Rothlisberger U. Optimization of effective atom centered potentials for London dispersion forces in density functional theory[J]. Phys Rev Lett, 2004, 93(15): 153004.

[19]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A).

[20]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865.

[21]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188.

[22]

Pfrommer B G, Côté M, Louie S G. Relaxation of crystals with the quasi-Newton method[J]. J Comput Phys, 1997, 131(1): 233.

[23]

Blanco M A, Francisco E, Luaña V. Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasiharmonic Debye model[J]. Comput Phys Commun, 2004, 158(1): 57.

[24]

Otero-de-la-Roza A, Abbasi-Pérez D, Lua~na V. Lua~na V. Gibbs2: a new version of the quasi-harmonic model code. II. models for solidstate thermodynamics, features and implementation[J]. Comput Phys Commun, 2011, 182: 10-2232.

[25]

Yu B H, Chen D. Phase transition character and thermodynamic modeling of the P6 and P6' hexagonal Si–N system supplemented by first-principles calculations[J]. J Alloys Compd, 2013, 581: 747.

[26]

Ching W Y, Ouyang L Z, Gale J D. Full ab initio geometry optimization of all known crystalline phases of Si3N4[J]. Phys Rev B, 2000, 61(13): 8696.

[27]

Yashima M, Ando Y, Tabira Y. Crystal structure and electron density of β-silicon nitride: experimental and theoretical evidence for the covalent bonding and charge transfer[J]. Organ Chem, 2007, 38(28): 28003.

[28]

Priest H P, Burns F C, Priest G L. Oxygen content of alpha silicon nitride[J]. J Am Ceram Soc, 1973, 56(7): 395.

[29]

Hirosaki N, Ogata S, Kocer C. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal β- and α-Si3N4[J]. Phys Rev B, 2002, 65(13): 134110.

[30]

Ching W Y, Xu Y N, Gale J D. Ab initio total energy calculation of β- and α-silicon nitride and the derivation of effective pair potentials with application to lattice dynamics[J]. J Am Ceram Soc, 1998, 81(12): 3189.

[31]

Born M, Huang K. Dynamical theory of crystal lattices[J]. Oxford: Clarendon, 1956.

[32]

Ventelon L, Willaime F, Clouet E. Ab initio investigation of the Peierls potential of screw dislocations in bcc Fe and W[J]. Acta Mater, 2013, 61(11): 3973.

[33]

Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions[J]. J Chem Phys, 1955, 23(10): 1833.

[34]

Ren S Y, Ching W Y. Electronic structures of α- and β-silicon nitride[J]. Phys Rev B, 1981, 23(10): 5454.

[35]

Oh J W, Kim C Y, Nahm K S. The hydriding kinetics of LaNi4.5AL0.5 with hydrogen[J]. J Alloys Compd, 1998, 278(1/2): 270.

[36]

He J L, Wu E D, Wang H T. Ionicties of boron–boron bonds in B12 icosahedra[J]. Phys Rev Lett, 2005, 94(1): 015504.

[37]

Ching W Y, Mo S D, Ouyang L Z. Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and c-GeSi2N4[J]. Phys Rev B, 2001, 62(24): 245110.

[1]

Yuping Cang, Xiaoling Yao, Dong Chen, Fan Yang, Huiming Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002

[2]

A. Narjis, A. Outzourhit, A. Aberkouks, M. El Hasnaoui, L. Nkhaili. Structural and thermoelectric properties of copper sulphide powders. J. Semicond., 2018, 39(12): 122001. doi: 10.1088/1674-4926/39/12/122001

[3]

M. Benaida, K. E. Aiadi, S. Mahtout, S. Djaadi, W. Rammal, M. Harb. Growth behavior and electronic properties of Gen + 1 and AsGen (n = 1–20) clusters: a DFT study. J. Semicond., 2019, 40(3): 032101. doi: 10.1088/1674-4926/40/3/032101

[4]

Ying Yang, Qing Feng, Weihua Wang, Yin Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

[5]

Zhonghua Yang, Guili Liu, Yingdong Qu, Rongde Li. First-principle study on energy gap of CNT superlattice structure. J. Semicond., 2015, 36(10): 102002. doi: 10.1088/1674-4926/36/10/102002

[6]

Yuxiang Qin, Deyan Hua, Xiao Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002

[7]

Dahua Ren, Baoyan Xiang, Cheng Hu, Kai Qian, Xinlu Cheng. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations. J. Semicond., 2018, 39(4): 042002. doi: 10.1088/1674-4926/39/4/042002

[8]

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations. J. Semicond., 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

[9]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[10]

Haitao Li, Jun Qian, Fangfang Han, Tinghui Li. Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure. J. Semicond., 2013, 34(7): 072003. doi: 10.1088/1674-4926/34/7/072003

[11]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[12]

Liang Ting, Li Junhong, Du Wenlong, Xue Chenyang, Zhang Wendong. Raman scattering studies on PZT thin films for trigonal–tetragonal phase transition. J. Semicond., 2009, 30(8): 083001. doi: 10.1088/1674-4926/30/8/083001

[13]

Wu Chunxia, Lü Youming, Shen Dezhen, Fan Xiwu, Zhou Ming, Cai Lan. Phase Structure Transition and Optical Properties of MgxZn1-xO Alloy. J. Semicond., 2007, 28(5): 701.

[14]

Tingting Chen, Bing Liu, Xiujian Chou, Jun Liu, Chenyang Xue, Wendong Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics. J. Semicond., 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002

[15]

Zhu Liang, Wenren Qingqing, Yan Jiang, Gu Yili, Yang Steve. Various Effective Resist Diffusion Lengths Methodology for OPC Model Calibration. J. Semicond., 2008, 29(12): 2346.

[16]

Li Shuping, Wang Renzhi. Average-Bond-Energy and Fermi Level on Metal-Semiconductor Contacts. J. Semicond., 2006, 27(5): 834.

[17]

Jia Baoshan, Wang Yunhua, Zhou Lu, Bai Duanyuan, Qiao Zhongliang, Gao Xin, Bo Baoxue. Influence of sputtering pressure on optical constants of a-GaAs1-xNx thin films. J. Semicond., 2012, 33(8): 083002. doi: 10.1088/1674-4926/33/8/083002

[18]

Liu Yumin, Yu Zhongyuan, Yang Hongbo, Huang Yongzhen. Influences of Differently Shaped Quantum Dots on Elastic Strain Field Distributions. J. Semicond., 2005, 26(12): 2355.

[19]

Wei Yuan, Xinzhou Wu, Weibing Gu, Jian Lin, Zheng Cui. Printed stretchable circuit on soft elastic substrate for wearable application. J. Semicond., 2018, 39(1): 015002. doi: 10.1088/1674-4926/39/1/015002

[20]

Yang Pei, Haibin Wu. Effect of uniaxial strain on the structural, electronic and elastic properties of orthorhombic BiMnO3. J. Semicond., 2015, 36(3): 032002. doi: 10.1088/1674-4926/36/3/032002

Search

Advanced Search >>

GET CITATION

D Chen, Y P Cang, Y S Luo. Electronic structures and phase transition characters of β-, P61-, P62- and δ-Si3N4 under extreme conditions: a density functional theory study[J]. J. Semicond., 2015, 36(2): 023003. doi: 10.1088/1674-4926/36/2/023003.

Export: BibTex EndNote

Article Metrics

Article views: 1177 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 05 July 2014 Manuscript revised: Online: Published: 01 February 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误