J. Semicond. > Volume 36 > Issue 2 > Article Number: 024006

Frequency stability of InP HBT over 0.2 to 220 GHz

Zhijiang Zhou 1, 2, , Kun Ren 1, , , Jun Liu 1, , Wei Cheng 2, , Haiyan Lu 2, and Lingling Sun 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The frequency stabilities of InP DHBTs in a broadband over 1 to 220 GHz are investigated. A hybrid π-topology small-signal model is used to accurately capture the parasitics of devices. The model parameters are extracted from measurements analytically. The investigation results show that the excellent agreement between the measured and simulated data is obtained in the frequency range 200 MHz to 220 GHz. The dominant parameters of the π-topology model, bias conditions and emitter area have significant effects on the stability factor K. The HBT model can be unconditionally stable by reasonable selection of the proper bias condition and the physical layout of the device.

Key words: double heterojunction bipolar transistor (DHBT)small-signal modelstability factor

Abstract: The frequency stabilities of InP DHBTs in a broadband over 1 to 220 GHz are investigated. A hybrid π-topology small-signal model is used to accurately capture the parasitics of devices. The model parameters are extracted from measurements analytically. The investigation results show that the excellent agreement between the measured and simulated data is obtained in the frequency range 200 MHz to 220 GHz. The dominant parameters of the π-topology model, bias conditions and emitter area have significant effects on the stability factor K. The HBT model can be unconditionally stable by reasonable selection of the proper bias condition and the physical layout of the device.

Key words: double heterojunction bipolar transistor (DHBT)small-signal modelstability factor



References:

[1]

Li B, Prasad S, Yang L W. A semianalytical parameter-extraction procedure for HBT equivalent circuit[J]. IEEE Trans Electron Devices, 1998, 46(10): 1427.

[2]

Schaper U, Holzapfl B. Analytical parameter extraction of the HBT equivalent circuit with T-like topology from measured S-parameters[J]. IEEE Trans Microw Theory Tech, 2002, 43(3): 493.

[3]

Rheinfelder C N, Beisswanger F J, Heinrich W. Nonlinear modeling of SiGe HBT's up to 50 GHz[J]. IEEE Trans Microw Theory Tech, 1997, 45(12): 2503.

[4]

Ghaddab H, Ghannouchi F M, Choubani F. Small-signal modeling of HBT's using a hybrid optimization/statistical technique[J]. IEEE Trans Microw Theory Tech, 1988, 46(3): 292.

[5]

Lee K, Choi K, Kook S H. Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model[J]. IEEE Trans Electron Devices, 2005, 52(3): 375.

[6]

Degachi L, Ghannouchi F M. Systematic and rigorous extraction method of HBT small-signal model parameters[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 682.

[7]

Voinigescu S P, Dacquay E, Adinolfi V. Characterization and modeling of an SiGe HBT technology for transceiver applications in the 100—300 GHz range[J]. IEEE Trans Microw Theory Tech, 2012, 60(12): 4024.

[8]

Su J G, Wong S C, Chang C Y. An investigation on RF CMOS stability related to bias and scaling[J]. Solid-State Electron, 2002, 46: 451.

[9]

Getreu I E. Modeling the bipolar transistor[J]. New York: Elsevier, 1978.

[10]

Ku W H. Unilateral gain and stability criterion of active two-ports in terms of scattering parameters[J]. Proc IEEE, 1966, 54: 1617.

[11]

Lai J W, Hafez W, Feng M. Vertical scaling of type I InP HBT with fT > 500 GHz[J]. International Journal of High Speed Electronics and Systems, 2004, 14(3): 625.

[12]

Chen Y, Li H. Small signal parameter investigation on the intrinsic stability of HBT[J]. IEEE Int Conf Microwave and Millimeter Wave Technology, 2012, 1: 1.

[1]

Li B, Prasad S, Yang L W. A semianalytical parameter-extraction procedure for HBT equivalent circuit[J]. IEEE Trans Electron Devices, 1998, 46(10): 1427.

[2]

Schaper U, Holzapfl B. Analytical parameter extraction of the HBT equivalent circuit with T-like topology from measured S-parameters[J]. IEEE Trans Microw Theory Tech, 2002, 43(3): 493.

[3]

Rheinfelder C N, Beisswanger F J, Heinrich W. Nonlinear modeling of SiGe HBT's up to 50 GHz[J]. IEEE Trans Microw Theory Tech, 1997, 45(12): 2503.

[4]

Ghaddab H, Ghannouchi F M, Choubani F. Small-signal modeling of HBT's using a hybrid optimization/statistical technique[J]. IEEE Trans Microw Theory Tech, 1988, 46(3): 292.

[5]

Lee K, Choi K, Kook S H. Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model[J]. IEEE Trans Electron Devices, 2005, 52(3): 375.

[6]

Degachi L, Ghannouchi F M. Systematic and rigorous extraction method of HBT small-signal model parameters[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 682.

[7]

Voinigescu S P, Dacquay E, Adinolfi V. Characterization and modeling of an SiGe HBT technology for transceiver applications in the 100—300 GHz range[J]. IEEE Trans Microw Theory Tech, 2012, 60(12): 4024.

[8]

Su J G, Wong S C, Chang C Y. An investigation on RF CMOS stability related to bias and scaling[J]. Solid-State Electron, 2002, 46: 451.

[9]

Getreu I E. Modeling the bipolar transistor[J]. New York: Elsevier, 1978.

[10]

Ku W H. Unilateral gain and stability criterion of active two-ports in terms of scattering parameters[J]. Proc IEEE, 1966, 54: 1617.

[11]

Lai J W, Hafez W, Feng M. Vertical scaling of type I InP HBT with fT > 500 GHz[J]. International Journal of High Speed Electronics and Systems, 2004, 14(3): 625.

[12]

Chen Y, Li H. Small signal parameter investigation on the intrinsic stability of HBT[J]. IEEE Int Conf Microwave and Millimeter Wave Technology, 2012, 1: 1.

[1]

Chen Yanhu, Shen Huajun, Liu Xinyu, Li Huijun, Xu Hui, Li Ling. Intrinsic stability of an HBT based on a small signal equivalent circuit model. J. Semicond., 2010, 31(12): 124010. doi: 10.1088/1674-4926/31/12/124010

[2]

Ma Teng, Hao Yue, Chen Chi, Ma Xiaohua. A new small-signal model for asymmetrical AlGaN/GaN HEMTs. J. Semicond., 2010, 31(6): 064002. doi: 10.1088/1674-4926/31/6/064002

[3]

Lin Luo, Jun Liu, Guofang Wang, Yuxing Wu. Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch. J. Semicond., 2020, 41(3): 032102. doi: 10.1088/1674-4926/41/3/032102

[4]

K Sivasankaran, P S Mallick. Stability performance of optimized symmetric DG-MOSFET. J. Semicond., 2013, 34(10): 104001. doi: 10.1088/1674-4926/34/10/104001

[5]

K Sivasankaran, P S Mallick. Impact of parameter fluctuations on RF stability performance of DG tunnel FET. J. Semicond., 2015, 36(8): 084001. doi: 10.1088/1674-4926/36/8/084001

[6]

Pu Yan, Pang Lei, Wang Liang, Chen Xiaojuan, Li Chengzhan, Liu Xinyu. Improvements to the extraction of an AlGaN/GaN HEMT small-signal model. J. Semicond., 2009, 30(12): 124003. doi: 10.1088/1674-4926/30/12/124003

[7]

Pongthavornkamol Tiwat, Guoguo Liu, Tingting Yuan, Yingkui Zheng, Xinyu Liu. Load-pull measurement analysis of AlGaN/GaN HEMT taking into account number of gate fingers. J. Semicond., 2016, 37(6): 064008. doi: 10.1088/1674-4926/37/6/064008

[8]

Xubo Song, Guodong Gu, Shaobo Dun, Yuanjie Lü, Tingting Han, Yuangang Wang, Peng Xu, Zhihong Feng. DC and RF characteristics of enhancement-mode InAlN/GaN HEMT with fluorine treatment. J. Semicond., 2014, 35(4): 044002. doi: 10.1088/1674-4926/35/4/044002

[9]

Zhiming Wang, Hui Huang, Zhifu Hu, Zhuobin Zhao, Xudong Wang, Xiaobin Luo, Jun Liu, Songyuan Yang. Comparison of on-wafer calibrations for THz InP-based PHEMTs applications. J. Semicond., 2015, 36(6): 064006. doi: 10.1088/1674-4926/36/6/064006

[10]

Cao Yuxiong, Jin Zhi, Ge Ji, Su Yongbo, Liu Xinyu. A symbolically defined InP double heterojunction bipolar transistor large-signal model. J. Semicond., 2009, 30(12): 124006. doi: 10.1088/1674-4926/30/12/124006

[11]

Le Yu, Yingkui Zheng, Sheng Zhang, Lei Pang, Ke Wei, Xiaohua Ma. Small-signal model parameter extraction for AlGaN/GaN HEMT. J. Semicond., 2016, 37(3): 034003. doi: 10.1088/1674-4926/37/3/034003

[12]

Liu Dan, Chen Xiaojuan, Liu Xinyu, Wu Dexin. A 22-Element Small-Signal Model of GaN HEMT Devices. J. Semicond., 2007, 28(9): 1438.

[13]

Fu Jun. Small-signal model parameter extraction for microwave SiGe HBTs based on Y- and Z-parameter characterization. J. Semicond., 2009, 30(8): 084005. doi: 10.1088/1674-4926/30/8/084005

[14]

Lu Jing, Wang Yan, Ma Long, Yu Zhiping. A New Small-Signal Modeling and Extraction Method in AlGaN/GaN HEMTs. J. Semicond., 2007, 28(4): 567.

[15]

Miao Ang, Li Yiqun, Wu Qiang, Cui Hailin, Huang Yongqing, Huang Hui, Ren Xiaomin. Small-Signal Equivalent Circuit Modeling of a Photodetector Chip. J. Semicond., 2007, 28(12): 1878.

[16]

D. K. Panda, G. Amarnath, T. R. Lenka. Small-signal model parameter extraction of E-mode N-polar GaN MOS-HEMT using optimization algorithms and its comparison. J. Semicond., 2018, 39(7): 074001. doi: 10.1088/1674-4926/39/7/074001

[17]

Wei Cheng, Yuan Wang, Yan Zhao, Haiyan Lu, Hanchao Gao, Naibin Yang. A THz InGaAs/InP double heterojunction bipolar transistor with fmax=325 GHz and BVCBO=10.6 V. J. Semicond., 2013, 34(5): 054006. doi: 10.1088/1674-4926/34/5/054006

[18]

Yuxia Shi, Zhi Jin, Zhijian Pan, Yongbo Su, Yuxiong Cao, Yan Wang. A Verilog-A large signal model for InP DHBT including thermal effects. J. Semicond., 2013, 34(6): 064007. doi: 10.1088/1674-4926/34/6/064007

[19]

Yuping Huang, Jun Liu, Kai Lü, Jing Chen. Investigation of temperature-dependent small-signal performances of TB SOI MOSFETs. J. Semicond., 2017, 38(4): 044006. doi: 10.1088/1674-4926/38/4/044006

[20]

Zhiming Wang, Xin Lü, Xiaobin Luo, Yuxing Cui, Xiguo Sun, Jianghui Mo, Xingchang Fu, Liang Li, Dawei He. Design of InAlAs/InGaAs PHEMTs and small-signal modeling from 0.5 to 110 GHz. J. Semicond., 2015, 36(2): 024005. doi: 10.1088/1674-4926/36/2/024005

Search

Advanced Search >>

GET CITATION

Z J Zhou, K Ren, J Liu, W Cheng, H Y Lu, L L Sun. Frequency stability of InP HBT over 0.2 to 220 GHz[J]. J. Semicond., 2015, 36(2): 024006. doi: 10.1088/1674-4926/36/2/024006.

Export: BibTex EndNote

Article Metrics

Article views: 855 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 27 July 2014 Manuscript revised: Online: Published: 01 February 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误