J. Semicond. > Volume 36 > Issue 6 > Article Number: 064001

Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3

Rahul Kumar 1, , Parag Bhargava 1, , Ritu Srivastava 2, and Priyanka Tyagi 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A new electroluminescent material tris-[5-choloro-8-hydroxyquinoline] aluminum has been synthesized and characterized. Solution of this material Al(5-Clq)3 in toluene showed absorption maxima at 385 nm which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(5-Clq)3 in toluene solution showed a peak at 522 nm. This material shows thermal stability up to 400 ℃. The structure of the device is ITO/0.4 wt%F4-TCNQ doped α-NPD (35 nm) / Al(5-Clq)3(30 nm)/ BCP (6 nm)/ Alq3(30 nm)/ LiF (1 nm)/Al(150 nm). This device exhibited a luminescence peak at 585 nm (CIE coordinates, x= 0.39, y= 0.50). The maximum luminescence of the device was 920 Cd/m2 at 25 V. The maximum current efficiency of OLED was 0.27 Cd/A at 20 V and maximum power efficiency was 0.04 lm/W at 18 V.

Key words: organometallic compoundschemical synthesisvapour depositionphotoluminescence spectroscopyelectrical propertiesluminescence

Abstract: A new electroluminescent material tris-[5-choloro-8-hydroxyquinoline] aluminum has been synthesized and characterized. Solution of this material Al(5-Clq)3 in toluene showed absorption maxima at 385 nm which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(5-Clq)3 in toluene solution showed a peak at 522 nm. This material shows thermal stability up to 400 ℃. The structure of the device is ITO/0.4 wt%F4-TCNQ doped α-NPD (35 nm) / Al(5-Clq)3(30 nm)/ BCP (6 nm)/ Alq3(30 nm)/ LiF (1 nm)/Al(150 nm). This device exhibited a luminescence peak at 585 nm (CIE coordinates, x= 0.39, y= 0.50). The maximum luminescence of the device was 920 Cd/m2 at 25 V. The maximum current efficiency of OLED was 0.27 Cd/A at 20 V and maximum power efficiency was 0.04 lm/W at 18 V.

Key words: organometallic compoundschemical synthesisvapour depositionphotoluminescence spectroscopyelectrical propertiesluminescence



References:

[1]

Prache O. Active matrix molecular OLED microdisplays[J]. Displays, 2001, 22: 49.

[2]

Krasnov A N. Electroluminescent displays: history and lessons learned[J]. Displays, 2003, 24: 73.

[3]

Kajikawa Y, Takeda Y. Citation network analysis of organic LEDs[J]. Technical Forecast and Social Change, 2009, 76: 1115.

[4]

Kalyani N T, Dhoble S J. Organic light emitting diodes: energy saving lighting technology-a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 2696.

[5]

Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51: 913.

[6]

Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. J Appl Phys, 1989, 85: 3610.

[7]

Vanslyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability[J]. Appl Phys Lett, 1996, 69: 2160.

[8]

Tao S L, Peng Z K, Zhang X H. Highly efficient non-doped blue organic light-emitting diodes based on fluorene derivatives with high thermal stability[J]. Adv Funct Mater, 2005, 15: 1716.

[9]

Wong K T, Chen Y M, Lin Y T. Nonconjugated hybrid of carbazole and fluorene: a novel host material for highly efficient green and red phosphorescent OLEDs[J]. Organic Letters, 2005, 7: 5361.

[10]

Du N, Mei Q, Lu M. Quinolinate aluminum and zinc complexes with multi-methyl methacrylate end groups: synthesis, photoluminescence, and electroluminescence characterization[J]. Synthetic Metals, 2005, 149: 193.

[11]

Wang S. Luminescence and electroluminescence of Al (III), B (III), Be (II) and Zn (II) complexes with nitrogen donors[J]. Coordination Chemistry Reviews, 2001, 215: 79.

[12]

Kumar L, Dhawan S K, Kamalasanan M N. Bright-orange organic light emitting diodes fabricated using benzene-naphthalene co-polymer[J]. Thin Solid Films, 2003, 441: 243.

[13]

Kim S H, Cui J Z, Park J Y. Synthesis and light emitting properties of polymeric metal complex dyes based on hydroxyquinoline moiety[J]. Dyes and Pigment, 2002, 55: 91.

[14]

Omar W A E, Haverinen H, Hormi O E O. New Alq3 derivatives with efficient photoluminescence and electroluminescence properties for organic light-emitting diodes[J]. Tetrahedron, 2009, 65: 9707.

[15]

Kumar P, Misra A, Bhardwaj R. Synthesis and characterization of some 5-coordinated aluminum-8-hydroxyquinoline derivatives for OLED applications[J]. Displays, 2008, 29: 351.

[16]

Kwong C Y, Djurisic A B, Choy W C H. Efficiency and stability of different tris(8-hydroxyquinoline) aluminium (Alq3) derivatives in OLED applications[J]. Mater Sci Eng B, 2005, 116: 75.

[17]

Wang G, He Y, Yang L. Synthesis and electroluminescent property of dinuclear aluminum 8-hydroxyquinoline complex[J]. J Lumin, 2009, 129: 1192.

[18]

Deaton J C, Place D W, Brown C T. The blue aluminum and gallium chelates for OLEDs[J]. Inorganica Chimica Acta, 2008, 361: 1020.

[19]

Pouchert C J. The Aldrich library of NMR spectra[J]. Aldrich Chemical Company, Milwaukee, 1983.

[20]

Zhang S, Wu W, Song W. Energy transfer dynamics between Alq3 and CdTeS/ZnS core shell nanocrystals[J]. Optik, 2010, 121: 312.

[21]

Palilis L C, Melinger I S, Wolak M A. Excitation energy transfer in tris(8-hydroxyquinolinato) aluminum doped with a pentacene derivative[J]. J Phys Chem, 2005, 109: 5456.

[1]

Prache O. Active matrix molecular OLED microdisplays[J]. Displays, 2001, 22: 49.

[2]

Krasnov A N. Electroluminescent displays: history and lessons learned[J]. Displays, 2003, 24: 73.

[3]

Kajikawa Y, Takeda Y. Citation network analysis of organic LEDs[J]. Technical Forecast and Social Change, 2009, 76: 1115.

[4]

Kalyani N T, Dhoble S J. Organic light emitting diodes: energy saving lighting technology-a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 2696.

[5]

Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51: 913.

[6]

Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. J Appl Phys, 1989, 85: 3610.

[7]

Vanslyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability[J]. Appl Phys Lett, 1996, 69: 2160.

[8]

Tao S L, Peng Z K, Zhang X H. Highly efficient non-doped blue organic light-emitting diodes based on fluorene derivatives with high thermal stability[J]. Adv Funct Mater, 2005, 15: 1716.

[9]

Wong K T, Chen Y M, Lin Y T. Nonconjugated hybrid of carbazole and fluorene: a novel host material for highly efficient green and red phosphorescent OLEDs[J]. Organic Letters, 2005, 7: 5361.

[10]

Du N, Mei Q, Lu M. Quinolinate aluminum and zinc complexes with multi-methyl methacrylate end groups: synthesis, photoluminescence, and electroluminescence characterization[J]. Synthetic Metals, 2005, 149: 193.

[11]

Wang S. Luminescence and electroluminescence of Al (III), B (III), Be (II) and Zn (II) complexes with nitrogen donors[J]. Coordination Chemistry Reviews, 2001, 215: 79.

[12]

Kumar L, Dhawan S K, Kamalasanan M N. Bright-orange organic light emitting diodes fabricated using benzene-naphthalene co-polymer[J]. Thin Solid Films, 2003, 441: 243.

[13]

Kim S H, Cui J Z, Park J Y. Synthesis and light emitting properties of polymeric metal complex dyes based on hydroxyquinoline moiety[J]. Dyes and Pigment, 2002, 55: 91.

[14]

Omar W A E, Haverinen H, Hormi O E O. New Alq3 derivatives with efficient photoluminescence and electroluminescence properties for organic light-emitting diodes[J]. Tetrahedron, 2009, 65: 9707.

[15]

Kumar P, Misra A, Bhardwaj R. Synthesis and characterization of some 5-coordinated aluminum-8-hydroxyquinoline derivatives for OLED applications[J]. Displays, 2008, 29: 351.

[16]

Kwong C Y, Djurisic A B, Choy W C H. Efficiency and stability of different tris(8-hydroxyquinoline) aluminium (Alq3) derivatives in OLED applications[J]. Mater Sci Eng B, 2005, 116: 75.

[17]

Wang G, He Y, Yang L. Synthesis and electroluminescent property of dinuclear aluminum 8-hydroxyquinoline complex[J]. J Lumin, 2009, 129: 1192.

[18]

Deaton J C, Place D W, Brown C T. The blue aluminum and gallium chelates for OLEDs[J]. Inorganica Chimica Acta, 2008, 361: 1020.

[19]

Pouchert C J. The Aldrich library of NMR spectra[J]. Aldrich Chemical Company, Milwaukee, 1983.

[20]

Zhang S, Wu W, Song W. Energy transfer dynamics between Alq3 and CdTeS/ZnS core shell nanocrystals[J]. Optik, 2010, 121: 312.

[21]

Palilis L C, Melinger I S, Wolak M A. Excitation energy transfer in tris(8-hydroxyquinolinato) aluminum doped with a pentacene derivative[J]. J Phys Chem, 2005, 109: 5456.

[1]

Rahul Kumar, Ritu Srivastava, Punita Singh. Synthesis and electroluminescence characterization of a new aluminum complex,[8-hydroxyquinoline] bis[2, 2'bipyridine] aluminum Al(Bpy)2q. J. Semicond., 2016, 37(1): 013001. doi: 10.1088/1674-4926/37/1/013001

[2]

Muhammad Tariq Saeed Chani, Sher Bahadar Khan, Kh. S. Karimov, M. Abid, Abdullah M. Asiri, Kalsoom Akhtar. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36(2): 023002. doi: 10.1088/1674-4926/36/2/023002

[3]

Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Fangfang Wang, Youwen Zhao. Electrical and optical property of annealed Te-doped GaSb. J. Semicond., 2017, 38(4): 043001. doi: 10.1088/1674-4926/38/4/043001

[4]

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

[5]

Amjid Iqbal, Arshad Mahmood, Q. Raza, A. Shah, Rashad Rashid, Zahid Ali, A. Malik, U. Aziz. Photoluminescence and structural analysis of wurtzite (ZnO)1−x(V2O5)x composite. J. Semicond., 2018, 39(8): 082002. doi: 10.1088/1674-4926/39/8/082002

[6]

Teng Xiaoming, Liang Chao, He Jinhua. Effect of strontium nitride on the properties of Sr2Si5N8:Eu2+ red phosphor. J. Semicond., 2011, 32(1): 012003. doi: 10.1088/1674-4926/32/1/012003

[7]

Fu Zhuxi, Sun Xiankai, Zhu Junjie, Lin Bixia. Effect of Lattice Mismatch on Luminescence of ZnO/Si Hetero-Structure. J. Semicond., 2006, 27(2): 239.

[8]

Jing Wen, Yumei Wen, Ping Li, Sanshan Wang. Junction-temperature estimation in AlGaInP light-emitting diodes using the luminescence spectra method. J. Semicond., 2016, 37(6): 064010. doi: 10.1088/1674-4926/37/6/064010

[9]

Du Yuanyuan, Jie Wanqi, Li Huanyong. Synthesis of ZnS whiskers and their photoluminescence properties. J. Semicond., 2009, 30(8): 083005. doi: 10.1088/1674-4926/30/8/083005

[10]

Pengfei Wang, Ruihua Nan, Zengyun Jian. The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals. J. Semicond., 2017, 38(6): 062002. doi: 10.1088/1674-4926/38/6/062002

[11]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[12]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[13]

G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J. Semicond., 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001

[14]

Jiaming Luo, Min Guan, Yang Zhang, Liqiang Chen, Yiping Zeng. The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007

[15]

Yongye Liang, Kyungsoo Jang, S. Velumani, Cam Phu Thi Nguyen, Junsin Yi. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor. J. Semicond., 2015, 36(2): 024007. doi: 10.1088/1674-4926/36/2/024007

[16]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[17]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[18]

Xia Jilin, Liu Bo, Song Zhitang, Feng Songlin. Influence of Deposition Parameters on Electrical Propertiesof Ge2Sb2Te5 Thin Films. J. Semicond., 2006, 27(S1): 155.

[19]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[20]

Chao Xiong, Jin Xiao, Lei Chen, Wenhan Du, Weilong Xu, Dongdong Hou. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond., 2018, 39(12): 124013. doi: 10.1088/1674-4926/39/12/124013

Search

Advanced Search >>

GET CITATION

R Kumar, P Bhargava, R Srivastava, P Tyagi. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3[J]. J. Semicond., 2015, 36(6): 064001. doi: 10.1088/1674-4926/36/6/064001.

Export: BibTex EndNote

Article Metrics

Article views: 1302 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 12 November 2014 Manuscript revised: Online: Published: 01 June 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误