J. Semicond. > Volume 37 > Issue 1 > Article Number: 013002

New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials

Xudong Qin , Yonghai Chen , , Yu Liu , Laipan Zhu , Yuan Li , Qing Wu and Wei Huang

+ Author Affilications + Find other works by these authors

PDF

Abstract: We employed the microscopic reflectance difference spectroscopy (micro-RDS) to determine the layer-number and microscopically image the surface topography of graphene and MoS2 samples. The contrast image shows the efficiency and reliability of this new clipping technique. As a low-cost, quantifiable, no-contact and non-destructive method, it is not concerned with the characteristic signal of certain materials and can be applied to arbitrary substrates. Therefore it is a perfect candidate for characterizing the thickness of graphene-like two-dimensional materials.

Key words: graphenetwo-dimensional materialsmicroscopic reflectance difference spectroscopymicroscopic morphologyRaman spectrasurface topography

Abstract: We employed the microscopic reflectance difference spectroscopy (micro-RDS) to determine the layer-number and microscopically image the surface topography of graphene and MoS2 samples. The contrast image shows the efficiency and reliability of this new clipping technique. As a low-cost, quantifiable, no-contact and non-destructive method, it is not concerned with the characteristic signal of certain materials and can be applied to arbitrary substrates. Therefore it is a perfect candidate for characterizing the thickness of graphene-like two-dimensional materials.

Key words: graphenetwo-dimensional materialsmicroscopic reflectance difference spectroscopymicroscopic morphologyRaman spectrasurface topography



References:

[1]

Novoselov K S. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451.

[2]

Nag A, Raidongia K, Hembram K. Graphene analogues of BN:novel synthesis and properties[J]. Acs Nano, 2010, 4(3): 1539.

[3]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271.

[4]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13): 474.

[5]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699.

[6]

Liu H, Neal A T, Zhu Z. Phosphorene:an unexplored 2D semiconductor with a high hole mobility[J]. Acs Nano, 2014.

[7]

Lin M, Wu D, Zhou Y. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy[J]. J Am Chem Soc, 2013, 135(36): 13274.

[8]

He J Q, Girard S N, Zheng J C. Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials[J]. Adv Mater, 2012, 24(32): 4440.

[9]

Geim A K. Graphene:status and prospects[J]. Science, 2009, 324(5934): 1530.

[10]

Novoselov K S, Fal'ko V I, Colombo L. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192.

[11]

Ni Z H, Wang H M, Kasim J. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Lett, 2007, 7(9): 2758.

[12]

Wang G X, Yang J, Park J. Facile synthesis and characterization of graphene nanosheets[J]. J Phys Chem C, 2008, 112(22): 8192.

[13]

Gupta A, Chen G, Joshi P. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Lett, 2006, 6(12): 2667.

[14]

Ferrari A C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143(1/2): 47.

[15]

Malard L M, Pimenta M A, Dresselhaus G. Raman spectroscopy in graphene[J]. Physics Reports-Review Section of Physics Letters, 2009, 473(5/6): 51.

[16]

Zhang Y B, Tan Y W, Stormer H L. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201.

[17]

Novoselov K S, McCann E, Morozov S V. Unconventional quantum Hall effect and Berry's phase of 2 pi in bilayer graphene[J]. Nature Physics, 2006, 2(3): 177.

[18]

Novoselov K S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666.

[19]

Aspnes D E, Harbison J P, Studna A A. Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs[J]. J Vac Sci Technol A:Vacuum Surfaces & Films, 1988, 6(3): 1327.

[20]

Chen Y H, Yang Z, Li R G. Reflectance-difference spectroscopy study of the Fermi-level position of low-temperature-grown GaAs[J]. Phys Rev B, 1997, 55(12).

[21]

Chen Y H, Yang Z, Wang Z G. Optical anisotropy of InAs submonolayer quantum wells in a (311) GaAs matrix[J]. Phys Rev B, 1997, 56(11): 6770.

[22]

Yu J L, Chen Y H, Jiang C Y. Room-temperature spin photocurrent spectra at interband excitation and comparison with reflectance-difference spectroscopy in InGaAs/AlGaAs quantum wells[J]. J Appl Phys, 2011, 109(5): 053519.

[23]

Yu J L, Chen Y H, Tang C G. Observation of strong anisotropic forbidden transitions in (001) InGaAs/GaAs single-quantum well by reflectance-difference spectroscopy and its behavior under uniaxial strain[J]. Nanoscale Research Letters, 2011, 6(1): 1.

[24]

Koopmans B, Richards B, Santos P. In-plane optical anisotropy of GaAs/AlAs multiple quantum wells probed by microscopic reflectance difference spectroscopy[J]. Appl Phys Lett, 1996, 69(6): 782.

[25]

Gao H S, Liu Y, Zhang H Y. Microscopic reflection difference spectroscopy for strain field of GaN induced by Berkovich nanoindentation[J]. Appl Phys Lett, 2014, 104(5): 053106.

[26]

Ferrari A C, Meyer J C, Scardaci V. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18): 13831.

[27]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

[28]

Mak K F, Sfeir M Y, Wu Y. Measurement of the optical conductivity of graphene[J]. Phys Rev Lett, 2008, 101(19): 6797.

[1]

Novoselov K S. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451.

[2]

Nag A, Raidongia K, Hembram K. Graphene analogues of BN:novel synthesis and properties[J]. Acs Nano, 2010, 4(3): 1539.

[3]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271.

[4]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13): 474.

[5]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699.

[6]

Liu H, Neal A T, Zhu Z. Phosphorene:an unexplored 2D semiconductor with a high hole mobility[J]. Acs Nano, 2014.

[7]

Lin M, Wu D, Zhou Y. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy[J]. J Am Chem Soc, 2013, 135(36): 13274.

[8]

He J Q, Girard S N, Zheng J C. Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials[J]. Adv Mater, 2012, 24(32): 4440.

[9]

Geim A K. Graphene:status and prospects[J]. Science, 2009, 324(5934): 1530.

[10]

Novoselov K S, Fal'ko V I, Colombo L. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192.

[11]

Ni Z H, Wang H M, Kasim J. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Lett, 2007, 7(9): 2758.

[12]

Wang G X, Yang J, Park J. Facile synthesis and characterization of graphene nanosheets[J]. J Phys Chem C, 2008, 112(22): 8192.

[13]

Gupta A, Chen G, Joshi P. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Lett, 2006, 6(12): 2667.

[14]

Ferrari A C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143(1/2): 47.

[15]

Malard L M, Pimenta M A, Dresselhaus G. Raman spectroscopy in graphene[J]. Physics Reports-Review Section of Physics Letters, 2009, 473(5/6): 51.

[16]

Zhang Y B, Tan Y W, Stormer H L. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201.

[17]

Novoselov K S, McCann E, Morozov S V. Unconventional quantum Hall effect and Berry's phase of 2 pi in bilayer graphene[J]. Nature Physics, 2006, 2(3): 177.

[18]

Novoselov K S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666.

[19]

Aspnes D E, Harbison J P, Studna A A. Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs[J]. J Vac Sci Technol A:Vacuum Surfaces & Films, 1988, 6(3): 1327.

[20]

Chen Y H, Yang Z, Li R G. Reflectance-difference spectroscopy study of the Fermi-level position of low-temperature-grown GaAs[J]. Phys Rev B, 1997, 55(12).

[21]

Chen Y H, Yang Z, Wang Z G. Optical anisotropy of InAs submonolayer quantum wells in a (311) GaAs matrix[J]. Phys Rev B, 1997, 56(11): 6770.

[22]

Yu J L, Chen Y H, Jiang C Y. Room-temperature spin photocurrent spectra at interband excitation and comparison with reflectance-difference spectroscopy in InGaAs/AlGaAs quantum wells[J]. J Appl Phys, 2011, 109(5): 053519.

[23]

Yu J L, Chen Y H, Tang C G. Observation of strong anisotropic forbidden transitions in (001) InGaAs/GaAs single-quantum well by reflectance-difference spectroscopy and its behavior under uniaxial strain[J]. Nanoscale Research Letters, 2011, 6(1): 1.

[24]

Koopmans B, Richards B, Santos P. In-plane optical anisotropy of GaAs/AlAs multiple quantum wells probed by microscopic reflectance difference spectroscopy[J]. Appl Phys Lett, 1996, 69(6): 782.

[25]

Gao H S, Liu Y, Zhang H Y. Microscopic reflection difference spectroscopy for strain field of GaN induced by Berkovich nanoindentation[J]. Appl Phys Lett, 2014, 104(5): 053106.

[26]

Ferrari A C, Meyer J C, Scardaci V. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18): 13831.

[27]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

[28]

Mak K F, Sfeir M Y, Wu Y. Measurement of the optical conductivity of graphene[J]. Phys Rev Lett, 2008, 101(19): 6797.

[1]

Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond., 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001

[2]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[3]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[4]

Lei Cui, Haibo Yin, Lijuan Jiang, Quan Wang, Chun Feng, Hongling Xiao, Cuimei Wang, Jiamin Gong, Bo Zhang, Baiquan Li, Xiaoliang Wang, Zhanguo Wang. The influence of Fe doping on the surface topography of GaN epitaxial material. J. Semicond., 2015, 36(10): 103002. doi: 10.1088/1674-4926/36/10/103002

[5]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[6]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[7]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[8]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[9]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[10]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[11]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[12]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[13]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[14]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[15]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[16]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[17]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[18]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[19]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[20]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

Search

Advanced Search >>

GET CITATION

X D Qin, Y H Chen, Y Liu, L P Zhu, Y Li, Q Wu, W Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials[J]. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002.

Export: BibTex EndNote

Article Metrics

Article views: 835 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 15 May 2015 Manuscript revised: Online: Published: 01 January 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误