J. Semicond. > Volume 37 > Issue 1 > Article Number: 015003

A high-linearity and high-resolution delay line structure with a calibration algorithm in delay-based LINC transmitters

Yue Han , , Shushan Qiao and Yong Hei

+ Author Affiliations + Find other works by these authors

PDF

Abstract: In order to overcome the bottleneck of low linearity and low resolution, an improved delay line structure is proposed with a calibration algorithm to conquer PVT (process, voltage and temperature) variations for an all-digital design. The chip is implemented in 0.13 μ m CMOS technology. Measurement results show that the proposed structure with the calibration algorithm can evidently improve the linearity and resolution of the delay line. The delay resolution is 2 ps and the root mean square jitter of the delay is 4.71 ps, leading to an error vector magnitude enhancement of 1.32 dB.

Key words: linear amplification with non-linear components (LINC)delay linelinearityresolution

Abstract: In order to overcome the bottleneck of low linearity and low resolution, an improved delay line structure is proposed with a calibration algorithm to conquer PVT (process, voltage and temperature) variations for an all-digital design. The chip is implemented in 0.13 μ m CMOS technology. Measurement results show that the proposed structure with the calibration algorithm can evidently improve the linearity and resolution of the delay line. The delay resolution is 2 ps and the root mean square jitter of the delay is 4.71 ps, leading to an error vector magnitude enhancement of 1.32 dB.

Key words: linear amplification with non-linear components (LINC)delay linelinearityresolution



References:

[1]

Tai W, Xu H T. Ashoke ack-off power efficiency enhancement[J]. IEEE J Solid-State Circuits, 2012, 43(12): 1646.

[2]

Cui Jie, Chen Lei, Kang Chunlei. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802[J]. Journal of Semiconductors.

[3]

Hur J, Kim H, Lee O. Multi-level LINC transmitter with non-isolated power combiner[J]. Electron Lett, 2013, 49(25): 1624.

[4]

Cox D C. Linear amplification with nonlinear components[J]. IEEE Trans Commun, 1974.

[5]

Chireix H. High power outphasing modulation[J]. Proc IRE, 1935, 23(11): 1370.

[6]

Li Y, Li Z P, Uyar O. High-throughput signal component separator for asymmetric multi-level outphasing power amplifiers[J]. IEEE J Solid-State Circuits, 2013, 48(2): 369.

[7]

Chen T W, Tsai P Y, Yu J Y. A sub-mW all-digital signal component separator with branch mismatch compensation for OFDM LINC transmitter[J]. IEEE J Solid-State Circuits, 2011, 46(11): 2514.

[8]

Ravi A, Madoglio P, Xu H T. A 2[J]. IEEE J Solid-State Circuits,.

[9]

Madoglio P, Ravi A, Xu H T. A 20 dBm 2[J]. ISSCC Dig Tech Papers,.

[10]

Han Yue, Qiao Shushan, Hei Yong. An all-digital synthesizable baseband for delay-based LINC transmitter with reconfigurable resolution[J]. Journal of Semiconductors, 2014, 35(11): 115001.

[1]

Tai W, Xu H T. Ashoke ack-off power efficiency enhancement[J]. IEEE J Solid-State Circuits, 2012, 43(12): 1646.

[2]

Cui Jie, Chen Lei, Kang Chunlei. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802[J]. Journal of Semiconductors.

[3]

Hur J, Kim H, Lee O. Multi-level LINC transmitter with non-isolated power combiner[J]. Electron Lett, 2013, 49(25): 1624.

[4]

Cox D C. Linear amplification with nonlinear components[J]. IEEE Trans Commun, 1974.

[5]

Chireix H. High power outphasing modulation[J]. Proc IRE, 1935, 23(11): 1370.

[6]

Li Y, Li Z P, Uyar O. High-throughput signal component separator for asymmetric multi-level outphasing power amplifiers[J]. IEEE J Solid-State Circuits, 2013, 48(2): 369.

[7]

Chen T W, Tsai P Y, Yu J Y. A sub-mW all-digital signal component separator with branch mismatch compensation for OFDM LINC transmitter[J]. IEEE J Solid-State Circuits, 2011, 46(11): 2514.

[8]

Ravi A, Madoglio P, Xu H T. A 2[J]. IEEE J Solid-State Circuits,.

[9]

Madoglio P, Ravi A, Xu H T. A 20 dBm 2[J]. ISSCC Dig Tech Papers,.

[10]

Han Yue, Qiao Shushan, Hei Yong. An all-digital synthesizable baseband for delay-based LINC transmitter with reconfigurable resolution[J]. Journal of Semiconductors, 2014, 35(11): 115001.

[1]

Rui Ma, Wenbin Bai, Zhangming Zhu. An energy-efficient and highly linear switching capacitor procedure for SAR ADCs. J. Semicond., 2015, 36(5): 055014. doi: 10.1088/1674-4926/36/5/055014

[2]

Zhixiong Ren, Kefeng Zhang, Lanqi Liu, Cong Li, Xiaofei Chen, Dongsheng Liu, Zhenglin Liu, Xuecheng Zou. On-chip power-combining techniques for watt-level linear power amplifiers in 0.18 μm CMOS. J. Semicond., 2015, 36(9): 095002. doi: 10.1088/1674-4926/36/9/095002

[3]

Songting Li, Jiancheng Li, Xiaochen Gu, Hongyi Wang, Zhaowen Zhuang. A high linearity downconverter for digital broadcasting system. J. Semicond., 2014, 35(12): 125010. doi: 10.1088/1674-4926/35/12/125010

[4]

Jiang Peichen, Guan Rui, Wang Wufeng, Chen Dongpo, Zhou Jianjun. A high linearity downconverter for SAW-less LTE receivers. J. Semicond., 2012, 33(10): 105002. doi: 10.1088/1674-4926/33/10/105002

[5]

Li Zhenrong, Zhuang Yiqi, Li Bing, Jin Gang, Jin Zhao. A 2.4 GHz high-linearity low-phase-noise CMOS LC-VCO based on capacitance compensation. J. Semicond., 2010, 31(7): 075005. doi: 10.1088/1674-4926/31/7/075005

[6]

Gu Ming, Shi Yin, Dai F F. A Wide-Band High-Linearity Down-Conversion Mixer for Cable Receptions. J. Semicond., 2006, 27(7): 1159.

[7]

Mingke Zhang, Qingsheng Hu. A 6.25 Gb/s equalizer in 0.18 μm CMOS technology for high-speed SerDes. J. Semicond., 2013, 34(12): 125010. doi: 10.1088/1674-4926/34/12/125010

[8]

Kuan Bao, Xiangning Fan, Wei Li, Zhigong Wang. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS. J. Semicond., 2013, 34(1): 015003. doi: 10.1088/1674-4926/34/1/015003

[9]

Huai Yongjin, Han Zhengsheng. Design of a High Precision Array Pulse Sensor in TCM. J. Semicond., 2008, 29(4): 701.

[10]

Ma Desheng, Shi Yin, Dai Fa Foster. A Wide-Band Low Noise Amplifier for Terrestrial and Cable Receptions. J. Semicond., 2006, 27(6): 970.

[11]

Huang Xiaodong, Huang Jianqiu, Qin Ming, Huang Qing’an. A Novel Capacitive Pressure Sensor. J. Semicond., 2008, 29(3): 428.

[12]

Yanbin Luo, Chengyan Ma, Yebing Gan, Min Qian, Tianchun Ye. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS. J. Semicond., 2015, 36(10): 105009. doi: 10.1088/1674-4926/36/10/105009

[13]

Zhi Chuande, Yang Huazhong. Analysis of Envelope Elimination and Restoration RF Power Amplifier. J. Semicond., 2007, 28(4): 582.

[14]

Li Guofeng, Geng Zhiqing, Wu Nanjian. A low power automatic gain control loop for a receiver. J. Semicond., 2010, 31(9): 095009. doi: 10.1088/1674-4926/31/9/095009

[15]

Liao Youchun, , Tang Zhangwen. A Wide-Band CMOS Low-Noise Amplifier for TV Tuner Applications. J. Semicond., 2006, 27(11): 2029.

[16]

Hong Guan, Hao Sun, Junlin Bao, Zhipeng Wang, Shuguang Zhou, Hongwei Zhu. High-performance RF Switch in 0.13 μm RF SOI process. J. Semicond., 2019, 40(2): 022401. doi: 10.1088/1674-4926/40/2/022401

[17]

Han Dejun, Sun Caiming, Sheng Liyan, Zhang Xiurong, Zhang Haijun, Yan Fengzhang, Yang Ru, Zhang Lu, Ning Baojun. High Linearity Float-Zone Silicon Phototransistors with High Sensitivity and Stability. J. Semicond., 2006, 27(S1): 223.

[18]

Yue Han, Shushan Qiao, Yong Hei. An all-digital synthesizable baseband for a delay-based LINC transmitter with reconfigurable resolution. J. Semicond., 2014, 35(11): 115001. doi: 10.1088/1674-4926/35/11/115001

[19]

Wu Tuo, Chen Hongyi, Qian Dahong. Theoretical analysis and an improvement method of the bias effect on the linearity of RF linear power amplifiers. J. Semicond., 2009, 30(5): 055002. doi: 10.1088/1674-4926/30/5/055002

[20]

A. Avila Garcia, L. Ortega Reyes. Analysis and parameter extraction of memristive structures based on Strukov’s non-linear model. J. Semicond., 2018, 39(12): 124009. doi: 10.1088/1674-4926/39/12/124009

Search

Advanced Search >>

GET CITATION

Y Han, S S Qiao, Y Hei. A high-linearity and high-resolution delay line structure with a calibration algorithm in delay-based LINC transmitters[J]. J. Semicond., 2016, 37(1): 015003. doi: 10.1088/1674-4926/37/1/015003.

Export: BibTex EndNote

Article Metrics

Article views: 1121 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 15 January 2015 Manuscript revised: Online: Published: 01 January 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误