J. Semicond. > Volume 37 > Issue 1 > Article Number: 015005

A reference voltage in capacitor-resister hybrid SAR ADC for front-end readout system of CZT detector

Wei Liu 1, , , Tingcun Wei 1, , Bo Li 1, , Lifeng Yang 1, and Yongcai Hu 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: An on-chip reference voltage has been designed in capacitor-resister hybrid SAR ADC for CZT detector with the TSMC 0.35 μ m 2P4M CMOS process. The voltage reference has a dynamic load since using variable capacitors and resistances, which need a large driving ability to deal with the current related to the time and sampling rate. Most of the previous articles about the reference for ADC present only the bandgap part for a low temperature coefficient and high PSRR. However, it is not enough and overall, it needs to consider the output driving ability. The proposed voltage reference is realized by the band-gap reference, voltage generator and output buffer. Apart from a low temperature coefficient and high PSRR, it has the features of a large driving ability and low power consumption. What is more, for CZT detectors application in space, a radiation-hardened design has been considered. The measurement results show that the output reference voltage of the buffer is 4.096 V. When the temperature varied from 0 to 80℃, the temperature coefficient is 12.2 ppm/℃. The PSRR was-70 dB@100 kHz. The drive current of the reference can reach up to 10 mA. The area of the voltage reference in the SAR ADC chip is only 449×614 μm2. The total power consumption is only 1.092 mW.

Key words: reference voltageSAR ADCCZT detector

Abstract: An on-chip reference voltage has been designed in capacitor-resister hybrid SAR ADC for CZT detector with the TSMC 0.35 μ m 2P4M CMOS process. The voltage reference has a dynamic load since using variable capacitors and resistances, which need a large driving ability to deal with the current related to the time and sampling rate. Most of the previous articles about the reference for ADC present only the bandgap part for a low temperature coefficient and high PSRR. However, it is not enough and overall, it needs to consider the output driving ability. The proposed voltage reference is realized by the band-gap reference, voltage generator and output buffer. Apart from a low temperature coefficient and high PSRR, it has the features of a large driving ability and low power consumption. What is more, for CZT detectors application in space, a radiation-hardened design has been considered. The measurement results show that the output reference voltage of the buffer is 4.096 V. When the temperature varied from 0 to 80℃, the temperature coefficient is 12.2 ppm/℃. The PSRR was-70 dB@100 kHz. The drive current of the reference can reach up to 10 mA. The area of the voltage reference in the SAR ADC chip is only 449×614 μm2. The total power consumption is only 1.092 mW.

Key words: reference voltageSAR ADCCZT detector



References:

[1]

Grindlay J, Hong J, Allen B. Development of tiled imaging CZT detectors for sensitive wide-field hard X-ray surveys to EXIST[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 671.

[2]

Li Q, Beilicke M, Lee K. Study of thick CZT detectors for X-ray and Gamma-ray astronomy[J]. Astroparticle Physics, 2011, 34(10): 769.

[3]

Butcher J, Hamade M, Petryk M. Drift time variations in CdZnTe detectors measured with alpha particles and gamma rays:their correlation with detector response[J]. IEEE Trans Nucl Sci, 2013, 60(2): 1189.

[4]

Overdick M, Baumer C, Engle K J. Status of direct conversion detectors for medical imaging with X-rays[J]. IEEE Trans Nucl Sci, 2009, 56(4): 1800.

[5]

Xu L, Jie W, Zha G. Radiation damage on CdZnTe:In crystals under high dose 60Co γ-rays[J]. Cryst Eng Comm, 2013, 15(47): 10304.

[6]

Gao W, Gan B, Li X. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager[J]. Nuclear Instruments and Method in Physics Research A, 2015, 780: 15.

[7]

Qiao Ning, Gao Jiantou, Zhao Kai. A 14-bit wide temperature range differential SAR ADC with an on-chip multi-segment BGR[J]. Journal of Semiconductors, 2011, 32(8): 085003.

[8]

Zhang Zhang, Yuan Yudan, Guo Yawei. A 1.2-V 19.2 mW 10-bit 30 MS/s pipelined ADC in 0.13-μm CMOS.[J]. Journal of Semiconductors, 2010, 31(9): 095014.

[9]

Razavi B. Design of analog CMOS integrated circuits[J]. Xi'an Jiaotong University Press, 2002: 317.

[10]

Huijsing J H. Operational amplifiers theory and design[J]. Kluwer Academic Publishers, 2006: 312.

[11]

Gevin O, Baron P, Coppolani X. IDeF-X ECLAIRs:an ultra low noise CMOS ASIC for the readout of Cd(Zn)Te detectors[J]. IEEE Science Symposium/Medical Imaging Conference, 2007: 326.

[12]

Chen Huabin, Xiang Jixuan, Xue Xiangyan. An analog front end with a 12-bit 3.2-MS/s SAR ADC for a power line communication system.[J]. Journal of Semiconductors, 2014, 35(11): 115008.

[13]

Cheng D, Li X, Zhang J. A dual-output voltage reference for high-accuracy pipelined ADC[J]. International Conference on Electronic Packaging Technology & High Density Packaging, 2008.

[14]

Yang X, Deng H, Quan L. A differential reference voltage source and its output buffer used in high-speed high-precision pipelined ADC[J]. 5th International Congress on Image and Signal Processing, 2012.

[1]

Grindlay J, Hong J, Allen B. Development of tiled imaging CZT detectors for sensitive wide-field hard X-ray surveys to EXIST[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 671.

[2]

Li Q, Beilicke M, Lee K. Study of thick CZT detectors for X-ray and Gamma-ray astronomy[J]. Astroparticle Physics, 2011, 34(10): 769.

[3]

Butcher J, Hamade M, Petryk M. Drift time variations in CdZnTe detectors measured with alpha particles and gamma rays:their correlation with detector response[J]. IEEE Trans Nucl Sci, 2013, 60(2): 1189.

[4]

Overdick M, Baumer C, Engle K J. Status of direct conversion detectors for medical imaging with X-rays[J]. IEEE Trans Nucl Sci, 2009, 56(4): 1800.

[5]

Xu L, Jie W, Zha G. Radiation damage on CdZnTe:In crystals under high dose 60Co γ-rays[J]. Cryst Eng Comm, 2013, 15(47): 10304.

[6]

Gao W, Gan B, Li X. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager[J]. Nuclear Instruments and Method in Physics Research A, 2015, 780: 15.

[7]

Qiao Ning, Gao Jiantou, Zhao Kai. A 14-bit wide temperature range differential SAR ADC with an on-chip multi-segment BGR[J]. Journal of Semiconductors, 2011, 32(8): 085003.

[8]

Zhang Zhang, Yuan Yudan, Guo Yawei. A 1.2-V 19.2 mW 10-bit 30 MS/s pipelined ADC in 0.13-μm CMOS.[J]. Journal of Semiconductors, 2010, 31(9): 095014.

[9]

Razavi B. Design of analog CMOS integrated circuits[J]. Xi'an Jiaotong University Press, 2002: 317.

[10]

Huijsing J H. Operational amplifiers theory and design[J]. Kluwer Academic Publishers, 2006: 312.

[11]

Gevin O, Baron P, Coppolani X. IDeF-X ECLAIRs:an ultra low noise CMOS ASIC for the readout of Cd(Zn)Te detectors[J]. IEEE Science Symposium/Medical Imaging Conference, 2007: 326.

[12]

Chen Huabin, Xiang Jixuan, Xue Xiangyan. An analog front end with a 12-bit 3.2-MS/s SAR ADC for a power line communication system.[J]. Journal of Semiconductors, 2014, 35(11): 115008.

[13]

Cheng D, Li X, Zhang J. A dual-output voltage reference for high-accuracy pipelined ADC[J]. International Conference on Electronic Packaging Technology & High Density Packaging, 2008.

[14]

Yang X, Deng H, Quan L. A differential reference voltage source and its output buffer used in high-speed high-precision pipelined ADC[J]. 5th International Congress on Image and Signal Processing, 2012.

[1]

Jihai Duan, Zhiyong Zhu, Jinli Deng, Weilin Xu. An 8 bit 1 MS/s SAR ADC with 7.72-ENOB. J. Semicond., 2017, 38(8): 085005. doi: 10.1088/1674-4926/38/8/085005

[2]

Beichen Zhang, Bingbing Yao, Liyuan Liu, Jian Liu, Nanjian Wu. High power-efficient asynchronous SAR ADC for IoT devices. J. Semicond., 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001

[3]

Jingjing Wang, Zemin Feng, Rongjin Xu, Chixiao Chen, Fan Ye, Jun Xu, Junyan Ren. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array. J. Semicond., 2016, 37(5): 055003. doi: 10.1088/1674-4926/37/5/055003

[4]

Dong Li, Qiao Meng, Fei Li. A 10 bit 50 MS/s SAR ADC with partial split capacitor switching scheme in 0.18 μm CMOS. J. Semicond., 2016, 37(1): 015004. doi: 10.1088/1674-4926/37/1/015004

[5]

Yuxiao Lu, Lu Sun, Zhe Li, Jianjun Zhou. A single-channel 10-bit 160 MS/s SAR ADC in 65 nm CMOS. J. Semicond., 2014, 35(4): 045009. doi: 10.1088/1674-4926/35/4/045009

[6]

Yan Song, Zhongming Xue, Pengcheng Yan, Jueying Zhang, Li Geng. A 0.6-V 8.3-ENOB asynchronous SAR ADC for biomedical applications. J. Semicond., 2014, 35(8): 085007. doi: 10.1088/1674-4926/35/8/085007

[7]

Hui Hong, Shiliang Li, Tao Zhou. Design of a low power 10 bit 300 ksps multi-channel SAR ADC for wireless sensor network applications. J. Semicond., 2015, 36(4): 045009. doi: 10.1088/1674-4926/36/4/045009

[8]

Mingyuan Yu, Ting Li, Jiaqi Yang, Shuangshuang Zhang, Fujiang Lin, Lin He. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process. J. Semicond., 2016, 37(7): 075005. doi: 10.1088/1674-4926/37/7/075005

[9]

Jixuan Xiang, Chixiao Chen, Fan Ye, Jun Xu, Ning Li, Junyan Ren. A 6-b 600 MS/s SAR ADC with a new switching procedure of 2-b/stage and self-locking comparators. J. Semicond., 2015, 36(5): 055009. doi: 10.1088/1674-4926/36/5/055009

[10]

Wei Lü, Duona Luo, Fengcheng Mei, Jiaqi Yang, Libin Yao, Lin He, Fujiang Lin. A 0.6 V 10 bit 1 MS/s monotonic switching SAR ADC with common mode stabilizer in 0.13 μm CMOS. J. Semicond., 2014, 35(5): 055006. doi: 10.1088/1674-4926/35/5/055006

[11]

Yun Gui, Xu Zhang, Yuan Wang, Ming Liu, Weihua Pei, Kai Liang, Suibiao Huang, Bin Li, Hongda Chen. A multi-channel fully differential programmable integrated circuit for neural recording application. J. Semicond., 2013, 34(10): 105009. doi: 10.1088/1674-4926/34/10/105009

[12]

Jinguang Jiang, Sen Li. A single lithium-ion battery protection circuit with high reliability and low power consumption. J. Semicond., 2014, 35(11): 115010. doi: 10.1088/1674-4926/35/11/115010

[13]

Liangbo Xie, Jiaxin Liu, Yao Wang, Guangjun Wen. A low-power CMOS smart temperature sensor for RFID application. J. Semicond., 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002

[14]

Xiaofei Pu, Lei Wan, Hui Zhang, Yajie Qin, Zhiliang Hong. A low-power portable ECG sensor interface with dry electrodes. J. Semicond., 2013, 34(5): 055002. doi: 10.1088/1674-4926/34/5/055002

[15]

Zhu Tiancheng, Yao Suying, Li Binqiao. A high precision programmable bandgap voltage reference design for high resolution ADC. J. Semicond., 2009, 30(7): 075005. doi: 10.1088/1674-4926/30/7/075005

[16]

Li Dan, Ye Jinghua, Hong Zhiliang. A High Performance Differential Reference Voltage Generator Used in ADC. J. Semicond., 2005, 26(11): 2248.

[17]

Xiuju He, Xian Gu, Weitao Li, Hanjun Jiang, Fule Li, Zhihua Wang. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer. J. Semicond., 2017, 38(10): 105007. doi: 10.1088/1674-4926/38/10/105007

[18]

Qiao Ning, Zhang Guoquan, Yang Bo, Liu Zhongli, Yu Fang. A 10-bit 50-MS/s reference-free low power SAR ADC in 0.18-μm SOI CMOS technology. J. Semicond., 2012, 33(9): 095005. doi: 10.1088/1674-4926/33/9/095005

[19]

Chen Qihui, Qin Yajie, Lu Bo, Hong Zhiliang. A low power 12-bit 30 MSPS CMOS pipeline ADC with on-chip voltage reference buffer. J. Semicond., 2011, 32(1): 015003. doi: 10.1088/1674-4926/32/1/015003

[20]

Hongming Chen, Yueguo Hao, Long Zhao, Yuhua Cheng. An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement. J. Semicond., 2013, 34(9): 095013. doi: 10.1088/1674-4926/34/9/095013

Search

Advanced Search >>

GET CITATION

W Liu, T C Wei, B Li, L F Yang, Y C Hu. A reference voltage in capacitor-resister hybrid SAR ADC for front-end readout system of CZT detector[J]. J. Semicond., 2016, 37(1): 015005. doi: 10.1088/1674-4926/37/1/015005.

Export: BibTex EndNote

Article Metrics

Article views: 1111 Times PDF downloads: 17 Times Cited by: 0 Times

History

Manuscript received: 24 July 2015 Manuscript revised: Online: Published: 01 January 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误