J. Semicond. > Volume 37 > Issue 11 > Article Number: 114004

Monolayer-molybdenum-disulfide-based nano-optomechanical transistor andewline tunable nonlinear responses

Huajun Chen , , Changzhao Chen , Yang Li and Xianwen Fang

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Atomically thin two-dimensional semiconductor nanomaterials have attained considerable attention currently. Here, we present a nano-optomechanical system based on a suspended monolayer molybdenum disulfide (MoS2). The linear and nonlinear coherent optical properties of this system, and the phenomenon of phonon-induced transparency are demonstrated. The transmission of the probe field can be manipulated by the power of a second ‘gating' (pump) field, which indicates a promising candidate for an optical transistor. We further study the nonlinear effect of the system, and the optical Kerr effect of the monolayer MoS2 resonator can be regulated under different parameter regimes. This scheme proposed here may indicate potential chip-scale applications of monolayer MoS2 resonator in quantum information with the currently popular pump-probe technology.

Key words: MoS2nanomechanical resonatoroptical transistornonlinear optical effect

Abstract: Atomically thin two-dimensional semiconductor nanomaterials have attained considerable attention currently. Here, we present a nano-optomechanical system based on a suspended monolayer molybdenum disulfide (MoS2). The linear and nonlinear coherent optical properties of this system, and the phenomenon of phonon-induced transparency are demonstrated. The transmission of the probe field can be manipulated by the power of a second ‘gating' (pump) field, which indicates a promising candidate for an optical transistor. We further study the nonlinear effect of the system, and the optical Kerr effect of the monolayer MoS2 resonator can be regulated under different parameter regimes. This scheme proposed here may indicate potential chip-scale applications of monolayer MoS2 resonator in quantum information with the currently popular pump-probe technology.

Key words: MoS2nanomechanical resonatoroptical transistornonlinear optical effect



References:

[1]

Neto A H C, Guinea F, Peres N M R. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81(1): 109. doi: 10.1103/RevModPhys.81.109

[2]

Chen C, Rosenblatt S, Bolotin K I. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4(12): 861. doi: 10.1038/nnano.2009.267

[3]

Ganatra R, Zhang Q. Few-layer MoS2:a promising layered semiconductor[J]. ACS Nano, 2014, 8(5): 4074. doi: 10.1021/nn405938z

[4]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805

[5]

He K, Poole C, Mak K F. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2[J]. Nano Lett, 2013, 13(6): 2931. doi: 10.1021/nl4013166

[6]

Eda G, Yamaguchi H, Voiry D. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett, 2011, 11(12): 5111. doi: 10.1021/nl201874w

[7]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness modulated optical energy gap[J]. Nano Lett, 2012, 12(7): 3695. doi: 10.1021/nl301485q

[8]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[9]

Fontana M, Deppe T, Boyd A K. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions[J]. Sci Rep, 2013, 3: 1634.

[10]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[11]

Krasnozhon D, Lembke D, Nyffeler C. MoS2 transistors operating at gigahertz frequencies[J]. Nano Lett, 2014, 14(10): 5905. doi: 10.1021/nl5028638

[12]

Li H, Yin Z, He Q. Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63. doi: 10.1002/smll.201101016

[13]

Perkins F K, Friedman A L, Cobas E. Chemical vapor sensing with monolayer MoS2[J]. Nano Lett, 2013, 13(2): 668. doi: 10.1021/nl3043079

[14]

Liu B, Chen L, Liu G. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors[J]. ACS Nano, 2014, 8(5): 5304. doi: 10.1021/nn5015215

[15]

Weber P, Guttinger J, Tsioutsios I. Coupling graphene mechanical resonators to superconducting microwave cavities[J]. Nano Lett, 2014, 14(5): 2854. doi: 10.1021/nl500879k

[16]

Singh V, Bosman S J, Schneider B H. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity[J]. Nat Nanotechnol, 2014, 9(10): 820. doi: 10.1038/nnano.2014.168

[17]

Lee J, Wang Z, He K. High frequency MoS2 nanomechanical resonators[J]. ACS Nano, 2013, 7(7): 6086. doi: 10.1021/nn4018872

[18]

van Leeuwen R, Castellanos-Gomez A, Steele G A. Time-domain response of atomically thin MoS2 nanomechanical resonators[J]. Appl Phys Lett, 2014, 105(4): 041911. doi: 10.1063/1.4892072

[19]

Castellanos-Gomez A, van Leeuwen R, Buscema M. Single-layer MoS2 mechanical resonators[J]. Adv Mater, 2013, 25(46): 6719. doi: 10.1002/adma.v25.46

[20]

Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703. doi: 10.1021/nn203879f

[21]

Castellanos-Gomez A, Poot M, Steele G A. Elastic properties of freely suspended MoS2 nanosheets[J]. Adv Mater, 2012, 24(6): 772. doi: 10.1002/adma.201103965

[22]

Lee C, Yan H, Brus L E. Anomalous lattice vibrations of single-and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695. doi: 10.1021/nn1003937

[23]

Kioseoglou G, Hanbicki A T, Currie M. Valley polarization and intervalley scattering in monolayer MoS2[J]. Appl Phys Lett, 2012, 101(22): 221907. doi: 10.1063/1.4768299

[24]

Molina-Sanchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2[J]. Phys Rev B, 2011, 84(15): 155413. doi: 10.1103/PhysRevB.84.155413

[25]

Li T. Ideal strength and phonon instability in single-layer MoS2[J]. Phys Rev B, 2012, 85(23): 235407. doi: 10.1103/PhysRevB.85.235407

[26]

Wang Z, Lee J, He K. Embracing structural nonidealities and asymmetries in two dimensional nanomechanical resonators[J]. Sci Rep, 2014, 4: 3919.

[27]

Suzuki H, Yamaguchi N, Izumi H. Theoretical and experimental studies on the resonance frequencies of a stretched circular plate:application to Japanese drum diaphragms[J]. Acoust Sci Technol, 2009, 30(5): 348. doi: 10.1250/ast.30.348

[28]

Chen H J, Zhu K D. Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS2 nanoresonator[J]. J Opt Soc Am B, 2014, 31(7): 1684. doi: 10.1364/JOSAB.31.001684

[29]

Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Phys Rep, 2013, 525(3): 223. doi: 10.1016/j.physrep.2012.11.003

[30]

Xu X, Sun B, Berman P R. Coherent optical spectroscopy of a strongly driven quantum dot[J]. Science, 2007, 317(5840): 929. doi: 10.1126/science.1142979

[31]

Chen H J, Zhu K D. Graphene-based nanoresonator with applications in optical transistor and mass sensing[J]. Sensors, 2014, 14(9): 16740. doi: 10.3390/s140916740

[32]

Safavi-Naeini A H, Alegre T P M, Chan J. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69. doi: 10.1038/nature09933

[33]

Okamoto H, Gourgout A, Chang C Y. Coherent phonon manipulation in coupled mechanical resonators[J]. Nat Phys, 2013, 9(8): 480. doi: 10.1038/nphys2665

[34]

Yan H, Low T, Guinea F. Tunable phonon-induced transparency in bilayer grapheme nanoribbons[J]. Nano Lett, 2014, 14(8): 4581. doi: 10.1021/nl501628x

[1]

Neto A H C, Guinea F, Peres N M R. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81(1): 109. doi: 10.1103/RevModPhys.81.109

[2]

Chen C, Rosenblatt S, Bolotin K I. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4(12): 861. doi: 10.1038/nnano.2009.267

[3]

Ganatra R, Zhang Q. Few-layer MoS2:a promising layered semiconductor[J]. ACS Nano, 2014, 8(5): 4074. doi: 10.1021/nn405938z

[4]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805

[5]

He K, Poole C, Mak K F. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2[J]. Nano Lett, 2013, 13(6): 2931. doi: 10.1021/nl4013166

[6]

Eda G, Yamaguchi H, Voiry D. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett, 2011, 11(12): 5111. doi: 10.1021/nl201874w

[7]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness modulated optical energy gap[J]. Nano Lett, 2012, 12(7): 3695. doi: 10.1021/nl301485q

[8]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[9]

Fontana M, Deppe T, Boyd A K. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions[J]. Sci Rep, 2013, 3: 1634.

[10]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[11]

Krasnozhon D, Lembke D, Nyffeler C. MoS2 transistors operating at gigahertz frequencies[J]. Nano Lett, 2014, 14(10): 5905. doi: 10.1021/nl5028638

[12]

Li H, Yin Z, He Q. Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63. doi: 10.1002/smll.201101016

[13]

Perkins F K, Friedman A L, Cobas E. Chemical vapor sensing with monolayer MoS2[J]. Nano Lett, 2013, 13(2): 668. doi: 10.1021/nl3043079

[14]

Liu B, Chen L, Liu G. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors[J]. ACS Nano, 2014, 8(5): 5304. doi: 10.1021/nn5015215

[15]

Weber P, Guttinger J, Tsioutsios I. Coupling graphene mechanical resonators to superconducting microwave cavities[J]. Nano Lett, 2014, 14(5): 2854. doi: 10.1021/nl500879k

[16]

Singh V, Bosman S J, Schneider B H. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity[J]. Nat Nanotechnol, 2014, 9(10): 820. doi: 10.1038/nnano.2014.168

[17]

Lee J, Wang Z, He K. High frequency MoS2 nanomechanical resonators[J]. ACS Nano, 2013, 7(7): 6086. doi: 10.1021/nn4018872

[18]

van Leeuwen R, Castellanos-Gomez A, Steele G A. Time-domain response of atomically thin MoS2 nanomechanical resonators[J]. Appl Phys Lett, 2014, 105(4): 041911. doi: 10.1063/1.4892072

[19]

Castellanos-Gomez A, van Leeuwen R, Buscema M. Single-layer MoS2 mechanical resonators[J]. Adv Mater, 2013, 25(46): 6719. doi: 10.1002/adma.v25.46

[20]

Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703. doi: 10.1021/nn203879f

[21]

Castellanos-Gomez A, Poot M, Steele G A. Elastic properties of freely suspended MoS2 nanosheets[J]. Adv Mater, 2012, 24(6): 772. doi: 10.1002/adma.201103965

[22]

Lee C, Yan H, Brus L E. Anomalous lattice vibrations of single-and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695. doi: 10.1021/nn1003937

[23]

Kioseoglou G, Hanbicki A T, Currie M. Valley polarization and intervalley scattering in monolayer MoS2[J]. Appl Phys Lett, 2012, 101(22): 221907. doi: 10.1063/1.4768299

[24]

Molina-Sanchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2[J]. Phys Rev B, 2011, 84(15): 155413. doi: 10.1103/PhysRevB.84.155413

[25]

Li T. Ideal strength and phonon instability in single-layer MoS2[J]. Phys Rev B, 2012, 85(23): 235407. doi: 10.1103/PhysRevB.85.235407

[26]

Wang Z, Lee J, He K. Embracing structural nonidealities and asymmetries in two dimensional nanomechanical resonators[J]. Sci Rep, 2014, 4: 3919.

[27]

Suzuki H, Yamaguchi N, Izumi H. Theoretical and experimental studies on the resonance frequencies of a stretched circular plate:application to Japanese drum diaphragms[J]. Acoust Sci Technol, 2009, 30(5): 348. doi: 10.1250/ast.30.348

[28]

Chen H J, Zhu K D. Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS2 nanoresonator[J]. J Opt Soc Am B, 2014, 31(7): 1684. doi: 10.1364/JOSAB.31.001684

[29]

Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Phys Rep, 2013, 525(3): 223. doi: 10.1016/j.physrep.2012.11.003

[30]

Xu X, Sun B, Berman P R. Coherent optical spectroscopy of a strongly driven quantum dot[J]. Science, 2007, 317(5840): 929. doi: 10.1126/science.1142979

[31]

Chen H J, Zhu K D. Graphene-based nanoresonator with applications in optical transistor and mass sensing[J]. Sensors, 2014, 14(9): 16740. doi: 10.3390/s140916740

[32]

Safavi-Naeini A H, Alegre T P M, Chan J. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69. doi: 10.1038/nature09933

[33]

Okamoto H, Gourgout A, Chang C Y. Coherent phonon manipulation in coupled mechanical resonators[J]. Nat Phys, 2013, 9(8): 480. doi: 10.1038/nphys2665

[34]

Yan H, Low T, Guinea F. Tunable phonon-induced transparency in bilayer grapheme nanoribbons[J]. Nano Lett, 2014, 14(8): 4581. doi: 10.1021/nl501628x

[1]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[2]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[3]

Fuyou Liao, Hongjuan Wang, Xiaojiao Guo, Zhongxun Guo, Ling Tong, Antoine Riaud, Yaochen Sheng, Lin Chen, Qingqing Sun, Peng Zhou, David Wei Zhang, Yang Chai, Xiangwei Jiang, Yan Liu, Wenzhong Bao. Charge transport and quantum confinement in MoS2 dual-gated transistors. J. Semicond., 2020, 41(7): 072904. doi: 10.1088/1674-4926/41/7/072904

[4]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[5]

N Divya Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

[6]

Guo Hengqun, Lin Shangxin, Wang Qiming. Photoluminescence and Application of Nonlinear Optical Property of nc-Si-SiO2 Films. J. Semicond., 2006, 27(2): 345.

[7]

Guo Hengqun, Yang Linlin, Wang Qiming. Nonlinear Optical Properties of Al-Doped nc-Si-SiO2 Composite Films. J. Semicond., 2007, 28(5): 640.

[8]

Anna V. Krivosheeva, Victor L. Shaposhnikov, Victor E. Borisenko, Jean-Louis Lazzari, Chow Waileong, Julia Gusakova, Beng Kang Tay. Theoretical study of defect impact on two-dimensional MoS2. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002

[9]

Shuaiqin Wu, Guangjian Wu, Xudong Wang, Yan Chen, Tie Lin, Hong Shen, Weida Hu, Xiangjian Meng, Jianlu Wang, Junhao Chu. A gate-free MoS2 phototransistor assisted by ferroelectrics. J. Semicond., 2019, 40(9): 092002. doi: 10.1088/1674-4926/40/9/092002

[10]

Zhang Shangjian, Zhang Qianshu, Li Heping, Liu Yongzhi, Liu Yong. All-Optical Sampling Using Nonlinear Polarization Rotation in a Single Semiconductor Optical Amplifier. J. Semicond., 2008, 29(6): 1031.

[11]

Lian Ning, Lijun Guo, Mei Kong, Tuoyuan Chen. Waveguide-type optical passive ring resonator gyro using frequency modulation spectroscopy technique. J. Semicond., 2014, 35(12): 124008. doi: 10.1088/1674-4926/35/12/124008

[12]

T Namitha Asokan, K S Urmila, Rajani Jacob, Rachel Reena Philip, G S Okram, V Ganesan, B Pradeep. Optical and electrical properties and phonon drag effect in low temperature TEP measurements of AgSbSe2 thin films. J. Semicond., 2014, 35(5): 052001. doi: 10.1088/1674-4926/35/5/052001

[13]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[14]

Zuo Yuhua, Mao Rongwei, Li Chuanbo, Zhao Lei, Cai Xiao, Cheng Buwen, Wang Qiming. Effect of High Temperatures on Characteristics of Thermo-Optical Tunable Optical Filters. J. Semicond., 2005, 26(S1): 200.

[15]

J. Abraham Hudson Mark, A. John Peter. Dielectric confinement on exciton binding energy and nonlinear optical properties in a strained Zn1-xinMgxinSe/Zn1-xoutMgxoutSe quantum well. J. Semicond., 2012, 33(9): 092001. doi: 10.1088/1674-4926/33/9/092001

[16]

J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect. J. Semicond., 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001

[17]

Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002

[18]

Atanu Banerjee, M. Mitra. Effect of optical illumination on DDR IMPATT diode at 36 GHz. J. Semicond., 2017, 38(11): 114002. doi: 10.1088/1674-4926/38/11/114002

[19]

Shi Jiaohua, Oian Zhiyong, , Cui Jianguo, Ma Jusheng, Geng Zhiting, Liu Yudong. Effect on Optical Properties of new Type Projection Screen by Fine Carbon Powder. J. Semicond., 2003, 24(S1): 217.

[20]

Sheng Wang, Yun Kang, Chunjie Han. Transverse Stark effect in the optical absorption in a square semiconducting quantum wire. J. Semicond., 2013, 34(10): 102001. doi: 10.1088/1674-4926/34/10/102001

Search

Advanced Search >>

GET CITATION

H J Chen, C Z Chen, Y Li, X W Fang. Monolayer-molybdenum-disulfide-based nano-optomechanical transistor andewline tunable nonlinear responses[J]. J. Semicond., 2016, 37(11): 114004. doi: 10.1088/1674-4926/37/11/114004.

Export: BibTex EndNote

Article Metrics

Article views: 1696 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 03 March 2016 Manuscript revised: 20 May 2016 Online: Published: 01 November 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误