J. Semicond. > Volume 37 > Issue 11 > Article Number: 114008

Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip

Yunchou Zhao , Hao Jia , Jianfeng Ding , Lei Zhang , Xin Fu and Lin Yang ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: With the continuous development of integrated circuits, the performance of the processor has been improved steadily. To integrate more cores in one processor is an effective way to improve the performance of the processor, while it is impossible to further improve the property of the processor by only increasing the clock frequency. For a processor with integrated multiple cores, its performance is determined not only by the number of cores, but also by communication efficiency between them. With more processor cores integrated on a chip, larger bandwidths are required to establish the communication among them. The traditional electrical interconnect has gradually become a bottleneck for improving the performance of multiple-core processors due to its limited bandwidth, high power consumption, and long latency. The optical interconnect is considered as a potential way to solve this issue. The optical router is the key device for realizing the optical interconnect. Its basic function is to achieve the data routing and switching between the local node and the multi-node. In this paper we present a five-port optical router for Mesh photonics network-on-chip. A five-port optical router composed of eight thermally tuned silicon Mach-Zehnder optical switches is demonstrated. The experimental spectral responses indicate that the optical signal-to-noise ratios of the optical router are over 13 dB in the wavelength range of 1525-1565 nm for all of its 20 optical links. Each optical link can manipulate 50 wavelength channels with the channel spacing of 100 GHz and the data rate of 32 Gbps for each wavelength channel in the same wavelength range. The lowest energy efficiency of the optical router is 43.4 fJ/bit.

Key words: silicon photonicsoptical routeroptical waveguides

Abstract: With the continuous development of integrated circuits, the performance of the processor has been improved steadily. To integrate more cores in one processor is an effective way to improve the performance of the processor, while it is impossible to further improve the property of the processor by only increasing the clock frequency. For a processor with integrated multiple cores, its performance is determined not only by the number of cores, but also by communication efficiency between them. With more processor cores integrated on a chip, larger bandwidths are required to establish the communication among them. The traditional electrical interconnect has gradually become a bottleneck for improving the performance of multiple-core processors due to its limited bandwidth, high power consumption, and long latency. The optical interconnect is considered as a potential way to solve this issue. The optical router is the key device for realizing the optical interconnect. Its basic function is to achieve the data routing and switching between the local node and the multi-node. In this paper we present a five-port optical router for Mesh photonics network-on-chip. A five-port optical router composed of eight thermally tuned silicon Mach-Zehnder optical switches is demonstrated. The experimental spectral responses indicate that the optical signal-to-noise ratios of the optical router are over 13 dB in the wavelength range of 1525-1565 nm for all of its 20 optical links. Each optical link can manipulate 50 wavelength channels with the channel spacing of 100 GHz and the data rate of 32 Gbps for each wavelength channel in the same wavelength range. The lowest energy efficiency of the optical router is 43.4 fJ/bit.

Key words: silicon photonicsoptical routeroptical waveguides



References:

[1]

Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proc IEEE, 2009, 97: 1166. doi: 10.1109/JPROC.2009.2014298

[2]

Joshi A, Batten C, Kwon Y J, et al. Silicon-photonic clos networks for global on-chip communication. 20093rd ACM/IEEE International Symposium on Networks-on-Chip, 2009:124

[3]

Fang A W, Park H, Cohen O. Electrically pumped hybrid AlGaInAs-silicon evanescent laser[J]. Opt Express, 2006, 14(20): 9203. doi: 10.1364/OE.14.009203

[4]

Qi A Y, Wang Y F, Guo X J. A novel lateral cavity surface emitting laser with top sub-wavelength grating[J]. Chinese Journal of Semiconductors, 2015, 36(1): 014012. doi: 10.1088/1674-4926/36/1/014012

[5]

Thomson D J, Gardes F Y, Hu Y. High contrast 40 Gbit/s optical modulation in silicon[J]. Opt Express, 2011, 19(12): 11507. doi: 10.1364/OE.19.011507

[6]

Fang Q, Liow T Y, Song J F. WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability[J]. Opt Express, 2010, 18(5): 5106. doi: 10.1364/OE.18.005106

[7]

Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nat Photon, 2010, 4(8): 527. doi: 10.1038/nphoton.2010.157

[8]

Shen Ning, Tang Zhen'an, Yu Jun. A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process[J]. Journal of Semiconductors, 2014, 35(3): 034013. doi: 10.1088/1674-4926/35/3/034013

[9]

Yao Yan, Liu Xiong, Yuan Li. A novel PIN photodetector with double linear arrays for rainfall prediction[J]. Journal of Semiconductors, 2015, 36(9): 094011. doi: 10.1088/1674-4926/36/9/094011

[10]

Yang L, Xia Y H, Zhang F F. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches[J]. Opt Lett, 2015, 40(7): 1402. doi: 10.1364/OL.40.001402

[11]

Gu H X, Mo K H, Xu J. A low-power low-cost optical router for optical networks-on-chip in multiprocessor systems-on-chip[J]. Proc IEEE Comput Soc Annu Symp, 2009: 19.

[12]

Poon A W, Luo X, Xu F. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection[J]. Proc IEEE, 2009, 97: 1216. doi: 10.1109/JPROC.2009.2014884

[13]

Ji R Q, Yang L, Zhang L. Five-port optical router for photonic networks-on-chip[J]. Opt Express, 2011, 19(21): 20258. doi: 10.1364/OE.19.020258

[14]

Tan X, Yang M, Zhang L. A generic optical router design for photonic network-on-chips[J]. IEEE/OSA J Lightwave Technol, 2012, 30(3): 368. doi: 10.1109/JLT.2011.2178019

[15]

Lee J H, Yoo J C, Han T H. System-level design framework for insertion-loss-minimized optical network-on-chip router architectures[J]. IEEE/OSA J Lightwave Technol, 2014, 32(18): 3161. doi: 10.1109/JLT.2014.2336234

[16]

Hu T, Shao H, Yang L. Four-port silicon multi-wavelength optical router for photonic networks-on-chip[J]. IEEE Photon Technol Lett, 2013, 25(23): 2281. doi: 10.1109/LPT.2013.2285171

[17]

Sherwood-Droz H, Wang H, Chen L. Optical 4×4 hitless silicon router for optical networks-on-chip (NoC)[J]. Opt Express, 2008, 16(20): 15915. doi: 10.1364/OE.16.015915

[18]

Ji R Q, Yang L, Zhang L. Microring-resonator-based fourport optical router for photonic networks-on-chip[J]. Opt Express, 2011, 19(20): 18945. doi: 10.1364/OE.19.018945

[19]

Gu H, Xu J, Wang Z. ODOR:a microresonator-based highperformance low-cost router for optical networks-on-chip. Proceedings of the 6th IEEE/ACM/IFIP international conference on Hardware/Software co-design and system synthesis. ACM, 2008:203

[20]

Min R, Ji R Q, Chen Q S. A universal method for constructing N -port nonblocking optical router for photonic networks-onchip[J]. IEEE/OSA J Lightwave Technol, 2012, 30(23): 3736. doi: 10.1109/JLT.2012.2227945

[21]

Yang M, Green W M J, Assefa S. Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks[J]. Opt Express, 2011, 19(1): 47. doi: 10.1364/OE.19.000047

[22]

Chen Q S, Zhang F F, Ji R Q. Universal method for constructing N -port non-blocking optical router based on 2×2 optical switch for photonic networks-on-chip[J]. Opt Express, 2014, 22(10): 12614. doi: 10.1364/OE.22.012614

[23]

Biberman A, Lee B G, Sherwood-Droz N. Broadband operation of nanophotonic router for silicon photonic networks-onchip[J]. IEEE Photon Technol Lett, 2010, 22(10): 926.

[24]

Ji R Q, Xu J, Yang L. Five-port optical router based on microring and switches for photonic networks-on-chip[J]. IEEE Photon Technol Lett, 2013, 25(5): 492. doi: 10.1109/LPT.2013.2243427

[25]

Li X, Xiao X, Xu H. Mach-Zehnder-based five-port silicon router for optical interconnects[J]. Opt Lett, 2013, 38(10): 1703. doi: 10.1364/OL.38.001703

[26]

Lee B G, Rylyakov A V, Green W M J. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits[J]. IEEE/OSA J Lightw Technol, 2014, 32(4): 743. doi: 10.1109/JLT.2013.2280400

[27]

Chen L, Chen Y K. Compact, low-loss and low-power 8×8 broadband silicon optical switch[J]. Opt Express, 2012, 20(17): 18977. doi: 10.1364/OE.20.018977

[28]

Lu L, Zhou L, Zhang F. Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers[J]. IEEE Photon J, 2015, 7(1): 1.

[29]

Soldano L B, Pennings E C M. Optical multi-mode devices based on self-imaging:principles and applications[J]. IEEE/OSA J Lightw Technol, 1995, 13(4): 615. doi: 10.1109/50.372474

[1]

Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proc IEEE, 2009, 97: 1166. doi: 10.1109/JPROC.2009.2014298

[2]

Joshi A, Batten C, Kwon Y J, et al. Silicon-photonic clos networks for global on-chip communication. 20093rd ACM/IEEE International Symposium on Networks-on-Chip, 2009:124

[3]

Fang A W, Park H, Cohen O. Electrically pumped hybrid AlGaInAs-silicon evanescent laser[J]. Opt Express, 2006, 14(20): 9203. doi: 10.1364/OE.14.009203

[4]

Qi A Y, Wang Y F, Guo X J. A novel lateral cavity surface emitting laser with top sub-wavelength grating[J]. Chinese Journal of Semiconductors, 2015, 36(1): 014012. doi: 10.1088/1674-4926/36/1/014012

[5]

Thomson D J, Gardes F Y, Hu Y. High contrast 40 Gbit/s optical modulation in silicon[J]. Opt Express, 2011, 19(12): 11507. doi: 10.1364/OE.19.011507

[6]

Fang Q, Liow T Y, Song J F. WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability[J]. Opt Express, 2010, 18(5): 5106. doi: 10.1364/OE.18.005106

[7]

Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nat Photon, 2010, 4(8): 527. doi: 10.1038/nphoton.2010.157

[8]

Shen Ning, Tang Zhen'an, Yu Jun. A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process[J]. Journal of Semiconductors, 2014, 35(3): 034013. doi: 10.1088/1674-4926/35/3/034013

[9]

Yao Yan, Liu Xiong, Yuan Li. A novel PIN photodetector with double linear arrays for rainfall prediction[J]. Journal of Semiconductors, 2015, 36(9): 094011. doi: 10.1088/1674-4926/36/9/094011

[10]

Yang L, Xia Y H, Zhang F F. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches[J]. Opt Lett, 2015, 40(7): 1402. doi: 10.1364/OL.40.001402

[11]

Gu H X, Mo K H, Xu J. A low-power low-cost optical router for optical networks-on-chip in multiprocessor systems-on-chip[J]. Proc IEEE Comput Soc Annu Symp, 2009: 19.

[12]

Poon A W, Luo X, Xu F. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection[J]. Proc IEEE, 2009, 97: 1216. doi: 10.1109/JPROC.2009.2014884

[13]

Ji R Q, Yang L, Zhang L. Five-port optical router for photonic networks-on-chip[J]. Opt Express, 2011, 19(21): 20258. doi: 10.1364/OE.19.020258

[14]

Tan X, Yang M, Zhang L. A generic optical router design for photonic network-on-chips[J]. IEEE/OSA J Lightwave Technol, 2012, 30(3): 368. doi: 10.1109/JLT.2011.2178019

[15]

Lee J H, Yoo J C, Han T H. System-level design framework for insertion-loss-minimized optical network-on-chip router architectures[J]. IEEE/OSA J Lightwave Technol, 2014, 32(18): 3161. doi: 10.1109/JLT.2014.2336234

[16]

Hu T, Shao H, Yang L. Four-port silicon multi-wavelength optical router for photonic networks-on-chip[J]. IEEE Photon Technol Lett, 2013, 25(23): 2281. doi: 10.1109/LPT.2013.2285171

[17]

Sherwood-Droz H, Wang H, Chen L. Optical 4×4 hitless silicon router for optical networks-on-chip (NoC)[J]. Opt Express, 2008, 16(20): 15915. doi: 10.1364/OE.16.015915

[18]

Ji R Q, Yang L, Zhang L. Microring-resonator-based fourport optical router for photonic networks-on-chip[J]. Opt Express, 2011, 19(20): 18945. doi: 10.1364/OE.19.018945

[19]

Gu H, Xu J, Wang Z. ODOR:a microresonator-based highperformance low-cost router for optical networks-on-chip. Proceedings of the 6th IEEE/ACM/IFIP international conference on Hardware/Software co-design and system synthesis. ACM, 2008:203

[20]

Min R, Ji R Q, Chen Q S. A universal method for constructing N -port nonblocking optical router for photonic networks-onchip[J]. IEEE/OSA J Lightwave Technol, 2012, 30(23): 3736. doi: 10.1109/JLT.2012.2227945

[21]

Yang M, Green W M J, Assefa S. Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks[J]. Opt Express, 2011, 19(1): 47. doi: 10.1364/OE.19.000047

[22]

Chen Q S, Zhang F F, Ji R Q. Universal method for constructing N -port non-blocking optical router based on 2×2 optical switch for photonic networks-on-chip[J]. Opt Express, 2014, 22(10): 12614. doi: 10.1364/OE.22.012614

[23]

Biberman A, Lee B G, Sherwood-Droz N. Broadband operation of nanophotonic router for silicon photonic networks-onchip[J]. IEEE Photon Technol Lett, 2010, 22(10): 926.

[24]

Ji R Q, Xu J, Yang L. Five-port optical router based on microring and switches for photonic networks-on-chip[J]. IEEE Photon Technol Lett, 2013, 25(5): 492. doi: 10.1109/LPT.2013.2243427

[25]

Li X, Xiao X, Xu H. Mach-Zehnder-based five-port silicon router for optical interconnects[J]. Opt Lett, 2013, 38(10): 1703. doi: 10.1364/OL.38.001703

[26]

Lee B G, Rylyakov A V, Green W M J. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits[J]. IEEE/OSA J Lightw Technol, 2014, 32(4): 743. doi: 10.1109/JLT.2013.2280400

[27]

Chen L, Chen Y K. Compact, low-loss and low-power 8×8 broadband silicon optical switch[J]. Opt Express, 2012, 20(17): 18977. doi: 10.1364/OE.20.018977

[28]

Lu L, Zhou L, Zhang F. Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers[J]. IEEE Photon J, 2015, 7(1): 1.

[29]

Soldano L B, Pennings E C M. Optical multi-mode devices based on self-imaging:principles and applications[J]. IEEE/OSA J Lightw Technol, 1995, 13(4): 615. doi: 10.1109/50.372474

[1]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[2]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[3]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[4]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[5]

Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

[6]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[7]

Chen Yuan, Jincheng Dai, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler. J. Semicond., 2018, 39(12): 124008. doi: 10.1088/1674-4926/39/12/124008

[8]

Chen Zhiwen, Li Zhangjian, Zhu Qile, Zhao Yuzhou, Lin Xubin, Li Jing, Cai Zhigang, Wang Gang, Li Baojun. Theoretical Analysis and Design of Si-based Micro- and Nano- Integrated Optical Waveguides. J. Semicond., 2005, 26(S1): 229.

[9]

Li ZhiYang, Li Yuntao, Liu Jingwei, Chen Shaowu, Yu Jinzhong. Compact Blocking 8×8 Optical Matrix Switch on S01 with Taper Waveguides and Self-Aligned Total Internal Reflection Mirrors. J. Semicond., 2007, 28(S1): 516.

[10]

Long Yongfu, Ge Jin. Downward uniformity and optical properties of porous silicon layers. J. Semicond., 2009, 30(5): 052003. doi: 10.1088/1674-4926/30/5/052003

[11]

Zhang Hongtao, Chen Kun, Lemmer U, Bastian G. Optical Properties of Ultralong Hexagonal Polytype Nano-Silicon Carbide Rod. J. Semicond., 2006, 27(S1): 117.

[12]

Long Yongfu, Ge Jin, Ding Xunmin, Hou Xiaoyuan. Temperature: a critical parameter affecting the optical properties of porous silicon. J. Semicond., 2009, 30(6): 063002. doi: 10.1088/1674-4926/30/6/063002

[13]

Chen Shaowu, Yu Jinzhong, Liu Jingwei, Wang Zhangtao, Xia Jinsong, Fan Zhongchao. Silicon-on-Insulator Based Optical Waveguide and Integrated Switch Matrix. J. Semicond., 2005, 26(S1): 212.

[14]

Long Yongfu. Radial microstructure and optical properties of a porous silicon layer by pulse anodic etching. J. Semicond., 2011, 32(4): 043003. doi: 10.1088/1674-4926/32/4/043003

[15]

Xiongfeng Fang, Lin Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect. J. Semicond., 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004

[16]

Daquan Yang, Xiao Liu, Xiaogang Li, Bing Duan, Aiqiang Wang, Yunfeng Xiao. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond., 2020, 41(0): -1.

[17]

Qin Ge, Hongqi Tao, Xuming Yu. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. J. Semicond., 2015, 36(12): 125003. doi: 10.1088/1674-4926/36/12/125003

[18]

Xingheng Xia, Weijing Wu, Xiaofeng Song, Guanming Li, Lei Zhou, Lirong Zhang, Miao Xu, Lei Wang, Junbiao Peng. High-speed low-power voltage-programmed driving scheme for AMOLED displays. J. Semicond., 2015, 36(12): 125005. doi: 10.1088/1674-4926/36/12/125005

[19]

H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002

[20]

Jiao Hong, Yuling Liu, Baoguo Zhang, Xinhuan Niu, Liying Han. A new kind of chelating agent with low pH value applied in the TSV CMP slurry. J. Semicond., 2015, 36(12): 126001. doi: 10.1088/1674-4926/36/12/126001

Search

Advanced Search >>

GET CITATION

Y C Zhao, H Jia, J F Ding, L Zhang, X Fu, L Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip[J]. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008.

Export: BibTex EndNote

Article Metrics

Article views: 1615 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 15 April 2016 Manuscript revised: 11 May 2016 Online: Published: 01 November 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误