J. Semicond. > Volume 37 > Issue 12 > Article Number: 122002

Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure

O.Ya Olikh 1, , , K.V. Voitenko 1, , R.M. Burbelo 1, and JaM. Olikh 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The influence of ultrasonic loading on reverse current-voltage characteristics of Mo/n-n+-Si structures has been investigated. The research of leakage current variation has been carried out for various ultrasonic wave frequencies (4.1 and 8.4 MHz), intensities (up to 0.8 W/cm2) and loading temperatures (130-330 K). The observed reversible acoustically induced increase in reverse currents was as large as 60%. It has been found that dominant charge transfer mechanisms are the thermionic emission (at high temperature) and the phonon-assisted tunneling (at low temperature). The ultrasound loading affects both processes due to the decrease of Schottky barrier height and binding energy of the electron on the trap.

Key words: Schottky contactleakage currentultrasound influence

Abstract: The influence of ultrasonic loading on reverse current-voltage characteristics of Mo/n-n+-Si structures has been investigated. The research of leakage current variation has been carried out for various ultrasonic wave frequencies (4.1 and 8.4 MHz), intensities (up to 0.8 W/cm2) and loading temperatures (130-330 K). The observed reversible acoustically induced increase in reverse currents was as large as 60%. It has been found that dominant charge transfer mechanisms are the thermionic emission (at high temperature) and the phonon-assisted tunneling (at low temperature). The ultrasound loading affects both processes due to the decrease of Schottky barrier height and binding energy of the electron on the trap.

Key words: Schottky contactleakage currentultrasound influence



References:

[1]

Savkina R K, Smirnov A B, Sizov F. The effect of high-frequency sonication on charge carrier transport in LPE and MBE HgCdTe layers[J]. Semicond Sci Technol, 2007, 22(2): 97. doi: 10.1088/0268-1242/22/2/016

[2]

Kulakova L, Gorelov V, Lutetskiy A. The rotation of the polarization plane of quantum-well heterolasers emission under the ultrasonic strain[J]. Solid State Commun, 2012, 152(17): 1690. doi: 10.1016/j.ssc.2012.04.065

[3]

Ostrovskii I, Korotchenkov O, Olikh O. Acoustically driven optical phenomena in bulk and low-dimensional semiconductors[J]. J Opt A, 2001, 3(4): S82.

[4]

Buyukkose S, Vratzov B, van der Veen J. Ultrahighfrequency surface acoustic wave generation for acoustic charge transport in silicon[J]. Appl Phys Lett, 2013, 102(1): 013112. doi: 10.1063/1.4774388

[5]

He J H, Gao J, Guo H Z. Correlated electron transport assisted by surface acoustic waves in micron-separated quasi-onedimensional channels[J]. Appl Phys Lett, 2010, 97(12): 122107. doi: 10.1063/1.3491287

[6]

Ostapenko S S, L Jastrzebski, Sopori B. Change of minority carrier diffusion length in polycrystalline silicon by ultrasound treatment[J]. Semicond Sci Technol, 1995, 10(11): 1494. doi: 10.1088/0268-1242/10/11/011

[7]

Ostapenko S. Defect passivation using ultrasound treatment: fundamentals and application[J]. Appl Phys A: Mater Sci Process, 1999, 69(2): 225. doi: 10.1007/s003390050994

[8]

Sukach A, Teterkin V. Ultrasonic treatment-induced modification of the electrical properties of InAs p-n junctions[J]. Tech Phys Lett, 2009, 35(6): 514. doi: 10.1134/S1063785009060108

[9]

Olikh O. Features of dynamic acoustically induced modification of photovoltaic parameters of silicon solar cells[J]. Semiconductors, 2011, 45(6): 798. doi: 10.1134/S1063782611060170

[10]

Davletova A, Karazhanov S Z. A study of electrical properties of dislocation engineered Si processed by ultrasound[J]. J Phys Chem Solids, 2009, 70(6): 989. doi: 10.1016/j.jpcs.2009.05.009

[11]

Davletova A, Karazhanov S Z. Open-circuit voltage decay transient in dislocation-engineered Si p-n junction[J]. J Phys D: Appl Phys, 2008, 41(16): 165107. doi: 10.1088/0022-3727/41/16/165107

[12]

Melnik V, Olikh Y, Popov V. Characteristics of silicon p-n junction formed by ion implantation with in situ ultrasound treatment[J]. Mater Sci Eng B, 2005, 124/125: 327. doi: 10.1016/j.mseb.2005.08.039

[13]

Olikh O. Effect of ultrasonic loading on current in Mo/n-n+-Si with Schottky barriers[J]. Semiconductors, 2013, 47(7): 987. doi: 10.1134/S106378261307018X

[14]

Olikh O. Reversible influence of ultrasound on γ-irradiated Mo/n-Si Schottky barrier structure[J]. Ultrasonics, 2015, 56: 545. doi: 10.1016/j.ultras.2014.10.008

[15]

Zaveryukhina N, Zaveryukhina E, Vlasov S. Acoustostimulated changes in the density of surface states and their energy spectrum in p-type silicon single crystals[J]. Tech Phys Lett, 2008, 34(3): 241. doi: 10.1134/S106378500803019X

[16]

Mirsagatov S A, Sapaeva I B, Nazarov Z. Ultrasonic annealing of surface states in the heterojunction of a p-Si/n-CdS/n+-CdS injection photodiode[J]. Inorg Mater, 2015, 51(1): 1. doi: 10.1134/S0020168515010148

[17]

Wosinski T, Makosa A, Witczak Z. Transformation of native defects in bulk GaAs under ultrasonic vibration[J]. Semicond Sci Technol, 1994, 9(11): 2047. doi: 10.1088/0268-1242/9/11/003

[18]

Buyanova I A, Ostapenko S S, Sheinkman M K. Ultrasound regeneration of EL2 centres in GaAs[J]. Semicond Sci Technol, 1994, 9(2): 158. doi: 10.1088/0268-1242/9/2/005

[19]

Korotchenkov O, Grimmliss H. Long-wavelength acousticmode-enhanced electron emission from Se and Te donors in silicon[J]. Phys Rev B, 1995, 52(20): 14598. doi: 10.1103/PhysRevB.52.14598

[20]

Ostapenko S S, Bell R E. Ultrasound stimulated dissociation of Fe-B pairs in silicon[J]. J Appl Phys, 1995, 77(10): 5458. doi: 10.1063/1.359243

[21]

Sathaiya D M, Karmalkar S. Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors[J]. J Appl Phys, 2006, 99(9): 093701. doi: 10.1063/1.2191620

[22]

Shan Q, Meyaard D S, Dai Q. Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes[J]. Appl Phys Lett, 2011, 99(25): 253506. doi: 10.1063/1.3668104

[23]

Pipinys P, Lapeika V. Temperature dependence of reverse-bias leakage current in GaN Schottky diodes as a consequence of phonon-assisted tunneling[J]. J Appl Phys, 2006, 99(9): 093709. doi: 10.1063/1.2199980

[24]

Liang Huaguo, Xu Hui, Huang Zhengfeng. Low-leakage and NBTI-mitigated N-type domino logic[J]. Journal of Semiconductors, 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009

[25]

Bi Xiuwen, Liang Hailian, Gu Xiaofeng. Design of novel DDSCR with embedded PNP structure for ESD protection[J]. Journal of Semiconductors, 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007

[26]

Abu-Samaha F S, Darwish A A A, Mansour A N. Temperature dependent of the current-voltage (Ⅳ) characteristics of TaSi2/nSi structure[J]. Mater Sci Semicond Process, 2013, 16(6): 1988. doi: 10.1016/j.mssp.2013.07.036

[27]

Jafar M M A G. High-bias current-voltage-temperature characteristics of undoped RF magnetron sputter deposited boron carbide (B5C)/p-type crystalline silicon heterojunctions[J]. Semicond Sci Technol, 2003, 18(1): 7. doi: 10.1088/0268-1242/18/1/302

[28]

Lee C H, Lim K S. Carrier transport through boron-doped amorphous diamond-like carbon p layer of amorphous silicon based p-i-n solar cells[J]. Appl Phys Lett, 1999, 75(4): 569. doi: 10.1063/1.124444

[29]

Pipinys P, Pipiniene A, Rimeika A. Phonon-assisted tunneling in reverse biased Schottky diodes[J]. J Appl Phys, 1999, 86(12): 6875. doi: 10.1063/1.371766

[30]

Tung R T. Recent advances in Schottky barrier concept[J]. Mater Sci Eng, R, 2001, 35(1-3): 1. doi: 10.1016/S0927-796X(01)00037-7

[31]

Olikh O Y, Voytenko K V, Burbelo R M. Ultrasound influence on I-V-T characteristics of silicon Schottky barrier structure[J]. J Appl Phys, 2015, 117(4): 044505. doi: 10.1063/1.4906844

[32]

Wang K, Ye M. Parameter determination of Schottky-barrier diode model using differential evolution[J]. Solid-State Electron, 2009, 53(2): 234. doi: 10.1016/j.sse.2008.11.010

[33]

Rhoderick E H, Williams R H. Metal semiconductor contacts. 2nd ed. Oxford: Clarendon Press, 1988

[34]

Aboelfotoh M. Electrical characteristics of W-Si(100) Schottky barrier junctions[J]. J Appl Phys, 1989, 66(1): 262. doi: 10.1063/1.343867

[35]

Zhua S, Meirhaeghea R L V, Detaverniera C. A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n-Si Schottky diodes[J]. Solid State Commun, 1999, 112(11): 611. doi: 10.1016/S0038-1098(99)00404-4

[36]

Kiveris A, Kudzmauskas S, P P. Release of electrons from traps by an electric field with phonon participation[J]. Phys Stat Sol (a), 1976, 37(1): 321. doi: 10.1002/(ISSN)1521-396X

[37]

Parker G, McGill T, Mead C. Electric field dependence of GaAs Schottky barriers[J]. Solid-State Electron, 1968, 11(2): 201. doi: 10.1016/0038-1101(68)90079-8

[38]

Seebauer E G, Kratzer M C. Charged point defects in semiconductors[J]. Mater Sci Eng R, 2006, 55(3-6): 57. doi: 10.1016/j.mser.2006.01.002

[39]

Lukjanitsa V V. Energy levels of vacancies and interstitial atoms in the band gap of silicon[J]. Semiconductors, 2003, 37(4): 404. doi: 10.1134/1.1568459

[40]

Mitrofanov O, Manfra M. Poole-Frenkel electron emission from the traps in AlGaN/GaN 13 transistors[J]. J Appl Phys, 2004, 95(11): 6414. doi: 10.1063/1.1719264

[41]

Zhdanova N G, Kagan M S, Landsberg E G. Ionization of shallow impurities by the electric field in a random coulomb potential[J]. JETP Lett, 1995, 62(2): 119.

[42]

Pavlovich V N. Enhanced diffusion of impurities and defects in crystals in conditions of ultrasonic and radiative excitation of the crystal lattice[J]. Phys Stat Sol (b), 1993, 180(1): 97. doi: 10.1002/(ISSN)1521-3951

[43]

Mirzade F. Elastic wave propagation in a solid layer with laserinduced point defects[J]. J Appl Phys, 2011, 110(6): 064906. doi: 10.1063/1.3633524

[44]

Olikh O, Voytenko K. On the mechanism of ultrasonic loading effect in silicon-based Schottky diodes[J]. Ultrasonics, 2016, 66(1): 1.

[1]

Savkina R K, Smirnov A B, Sizov F. The effect of high-frequency sonication on charge carrier transport in LPE and MBE HgCdTe layers[J]. Semicond Sci Technol, 2007, 22(2): 97. doi: 10.1088/0268-1242/22/2/016

[2]

Kulakova L, Gorelov V, Lutetskiy A. The rotation of the polarization plane of quantum-well heterolasers emission under the ultrasonic strain[J]. Solid State Commun, 2012, 152(17): 1690. doi: 10.1016/j.ssc.2012.04.065

[3]

Ostrovskii I, Korotchenkov O, Olikh O. Acoustically driven optical phenomena in bulk and low-dimensional semiconductors[J]. J Opt A, 2001, 3(4): S82.

[4]

Buyukkose S, Vratzov B, van der Veen J. Ultrahighfrequency surface acoustic wave generation for acoustic charge transport in silicon[J]. Appl Phys Lett, 2013, 102(1): 013112. doi: 10.1063/1.4774388

[5]

He J H, Gao J, Guo H Z. Correlated electron transport assisted by surface acoustic waves in micron-separated quasi-onedimensional channels[J]. Appl Phys Lett, 2010, 97(12): 122107. doi: 10.1063/1.3491287

[6]

Ostapenko S S, L Jastrzebski, Sopori B. Change of minority carrier diffusion length in polycrystalline silicon by ultrasound treatment[J]. Semicond Sci Technol, 1995, 10(11): 1494. doi: 10.1088/0268-1242/10/11/011

[7]

Ostapenko S. Defect passivation using ultrasound treatment: fundamentals and application[J]. Appl Phys A: Mater Sci Process, 1999, 69(2): 225. doi: 10.1007/s003390050994

[8]

Sukach A, Teterkin V. Ultrasonic treatment-induced modification of the electrical properties of InAs p-n junctions[J]. Tech Phys Lett, 2009, 35(6): 514. doi: 10.1134/S1063785009060108

[9]

Olikh O. Features of dynamic acoustically induced modification of photovoltaic parameters of silicon solar cells[J]. Semiconductors, 2011, 45(6): 798. doi: 10.1134/S1063782611060170

[10]

Davletova A, Karazhanov S Z. A study of electrical properties of dislocation engineered Si processed by ultrasound[J]. J Phys Chem Solids, 2009, 70(6): 989. doi: 10.1016/j.jpcs.2009.05.009

[11]

Davletova A, Karazhanov S Z. Open-circuit voltage decay transient in dislocation-engineered Si p-n junction[J]. J Phys D: Appl Phys, 2008, 41(16): 165107. doi: 10.1088/0022-3727/41/16/165107

[12]

Melnik V, Olikh Y, Popov V. Characteristics of silicon p-n junction formed by ion implantation with in situ ultrasound treatment[J]. Mater Sci Eng B, 2005, 124/125: 327. doi: 10.1016/j.mseb.2005.08.039

[13]

Olikh O. Effect of ultrasonic loading on current in Mo/n-n+-Si with Schottky barriers[J]. Semiconductors, 2013, 47(7): 987. doi: 10.1134/S106378261307018X

[14]

Olikh O. Reversible influence of ultrasound on γ-irradiated Mo/n-Si Schottky barrier structure[J]. Ultrasonics, 2015, 56: 545. doi: 10.1016/j.ultras.2014.10.008

[15]

Zaveryukhina N, Zaveryukhina E, Vlasov S. Acoustostimulated changes in the density of surface states and their energy spectrum in p-type silicon single crystals[J]. Tech Phys Lett, 2008, 34(3): 241. doi: 10.1134/S106378500803019X

[16]

Mirsagatov S A, Sapaeva I B, Nazarov Z. Ultrasonic annealing of surface states in the heterojunction of a p-Si/n-CdS/n+-CdS injection photodiode[J]. Inorg Mater, 2015, 51(1): 1. doi: 10.1134/S0020168515010148

[17]

Wosinski T, Makosa A, Witczak Z. Transformation of native defects in bulk GaAs under ultrasonic vibration[J]. Semicond Sci Technol, 1994, 9(11): 2047. doi: 10.1088/0268-1242/9/11/003

[18]

Buyanova I A, Ostapenko S S, Sheinkman M K. Ultrasound regeneration of EL2 centres in GaAs[J]. Semicond Sci Technol, 1994, 9(2): 158. doi: 10.1088/0268-1242/9/2/005

[19]

Korotchenkov O, Grimmliss H. Long-wavelength acousticmode-enhanced electron emission from Se and Te donors in silicon[J]. Phys Rev B, 1995, 52(20): 14598. doi: 10.1103/PhysRevB.52.14598

[20]

Ostapenko S S, Bell R E. Ultrasound stimulated dissociation of Fe-B pairs in silicon[J]. J Appl Phys, 1995, 77(10): 5458. doi: 10.1063/1.359243

[21]

Sathaiya D M, Karmalkar S. Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors[J]. J Appl Phys, 2006, 99(9): 093701. doi: 10.1063/1.2191620

[22]

Shan Q, Meyaard D S, Dai Q. Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes[J]. Appl Phys Lett, 2011, 99(25): 253506. doi: 10.1063/1.3668104

[23]

Pipinys P, Lapeika V. Temperature dependence of reverse-bias leakage current in GaN Schottky diodes as a consequence of phonon-assisted tunneling[J]. J Appl Phys, 2006, 99(9): 093709. doi: 10.1063/1.2199980

[24]

Liang Huaguo, Xu Hui, Huang Zhengfeng. Low-leakage and NBTI-mitigated N-type domino logic[J]. Journal of Semiconductors, 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009

[25]

Bi Xiuwen, Liang Hailian, Gu Xiaofeng. Design of novel DDSCR with embedded PNP structure for ESD protection[J]. Journal of Semiconductors, 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007

[26]

Abu-Samaha F S, Darwish A A A, Mansour A N. Temperature dependent of the current-voltage (Ⅳ) characteristics of TaSi2/nSi structure[J]. Mater Sci Semicond Process, 2013, 16(6): 1988. doi: 10.1016/j.mssp.2013.07.036

[27]

Jafar M M A G. High-bias current-voltage-temperature characteristics of undoped RF magnetron sputter deposited boron carbide (B5C)/p-type crystalline silicon heterojunctions[J]. Semicond Sci Technol, 2003, 18(1): 7. doi: 10.1088/0268-1242/18/1/302

[28]

Lee C H, Lim K S. Carrier transport through boron-doped amorphous diamond-like carbon p layer of amorphous silicon based p-i-n solar cells[J]. Appl Phys Lett, 1999, 75(4): 569. doi: 10.1063/1.124444

[29]

Pipinys P, Pipiniene A, Rimeika A. Phonon-assisted tunneling in reverse biased Schottky diodes[J]. J Appl Phys, 1999, 86(12): 6875. doi: 10.1063/1.371766

[30]

Tung R T. Recent advances in Schottky barrier concept[J]. Mater Sci Eng, R, 2001, 35(1-3): 1. doi: 10.1016/S0927-796X(01)00037-7

[31]

Olikh O Y, Voytenko K V, Burbelo R M. Ultrasound influence on I-V-T characteristics of silicon Schottky barrier structure[J]. J Appl Phys, 2015, 117(4): 044505. doi: 10.1063/1.4906844

[32]

Wang K, Ye M. Parameter determination of Schottky-barrier diode model using differential evolution[J]. Solid-State Electron, 2009, 53(2): 234. doi: 10.1016/j.sse.2008.11.010

[33]

Rhoderick E H, Williams R H. Metal semiconductor contacts. 2nd ed. Oxford: Clarendon Press, 1988

[34]

Aboelfotoh M. Electrical characteristics of W-Si(100) Schottky barrier junctions[J]. J Appl Phys, 1989, 66(1): 262. doi: 10.1063/1.343867

[35]

Zhua S, Meirhaeghea R L V, Detaverniera C. A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n-Si Schottky diodes[J]. Solid State Commun, 1999, 112(11): 611. doi: 10.1016/S0038-1098(99)00404-4

[36]

Kiveris A, Kudzmauskas S, P P. Release of electrons from traps by an electric field with phonon participation[J]. Phys Stat Sol (a), 1976, 37(1): 321. doi: 10.1002/(ISSN)1521-396X

[37]

Parker G, McGill T, Mead C. Electric field dependence of GaAs Schottky barriers[J]. Solid-State Electron, 1968, 11(2): 201. doi: 10.1016/0038-1101(68)90079-8

[38]

Seebauer E G, Kratzer M C. Charged point defects in semiconductors[J]. Mater Sci Eng R, 2006, 55(3-6): 57. doi: 10.1016/j.mser.2006.01.002

[39]

Lukjanitsa V V. Energy levels of vacancies and interstitial atoms in the band gap of silicon[J]. Semiconductors, 2003, 37(4): 404. doi: 10.1134/1.1568459

[40]

Mitrofanov O, Manfra M. Poole-Frenkel electron emission from the traps in AlGaN/GaN 13 transistors[J]. J Appl Phys, 2004, 95(11): 6414. doi: 10.1063/1.1719264

[41]

Zhdanova N G, Kagan M S, Landsberg E G. Ionization of shallow impurities by the electric field in a random coulomb potential[J]. JETP Lett, 1995, 62(2): 119.

[42]

Pavlovich V N. Enhanced diffusion of impurities and defects in crystals in conditions of ultrasonic and radiative excitation of the crystal lattice[J]. Phys Stat Sol (b), 1993, 180(1): 97. doi: 10.1002/(ISSN)1521-3951

[43]

Mirzade F. Elastic wave propagation in a solid layer with laserinduced point defects[J]. J Appl Phys, 2011, 110(6): 064906. doi: 10.1063/1.3633524

[44]

Olikh O, Voytenko K. On the mechanism of ultrasonic loading effect in silicon-based Schottky diodes[J]. Ultrasonics, 2016, 66(1): 1.

[1]

Zhou Jin, Hao Yilong, Wu Guoying, Yang Zhijian, Zhang Guoyi. Properties of Schottky Contact in MSM UV Detectors Based on AlGaN/GaN Heterostructure. J. Semicond., 2005, 26(S1): 247.

[2]

Lü Hongliang, Zhang Yimen, Zhang Yuming, Che Yong, Sun Ming. A Simple Method of Surface Parameter Extraction for Gate Schottky Contact in 4H-SiC MESFETs. J. Semicond., 2008, 29(3): 458.

[3]

Tang Xiaoyan, Zhang Yimen, Zhang Yuming, Guo Hui, Zhang Lin. Direct Tunneling Effect in SiC Schottky Contacts. J. Semicond., 2006, 27(1): 174.

[4]

M. A. Yeganeh, R. K. Mamedov, A. J. Novinrooz. Nano inhomogeneity effects on small Ag/n-Si Schottky diode parameters at high temperature. J. Semicond., 2013, 34(8): 082002. doi: 10.1088/1674-4926/34/8/082002

[5]

Xue Jiying, Li Tao, Yu Zhiping. Accurate and fast table look-up models for leakage current analysis in 65 nm CMOS technology. J. Semicond., 2009, 30(2): 024004. doi: 10.1088/1674-4926/30/2/024004

[6]

Wanjun Chen, Jing Zhang, Bo Zhang, Kevin Jing Chen . Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs. J. Semicond., 2013, 34(2): 024003. doi: 10.1088/1674-4926/34/2/024003

[7]

Huaguo Liang, Hui Xu, Zhengfeng Huang, Maoxiang Yi. A low-leakage and NBTI-mitigated N-type domino logic. J. Semicond., 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009

[8]

Gong Na, Wang Jinhui, Guo Baozeng, Pang Jiao. Temperature and Process Variations Aware Dual Threshold Voltage Footed Domino Circuits Leakage Management. J. Semicond., 2008, 29(12): 2364.

[9]

Zhaonian Yang, Hongxia Liu, Shulong Wang. A low leakage power-rail ESD detection circuit with a modified RC network for a 90-nm CMOS process. J. Semicond., 2013, 34(4): 045010. doi: 10.1088/1674-4926/34/4/045010

[10]

Guo Baozeng, Gong Na, Wang Jinhui. Designing Leakage-Tolerant and Noise-Immune Enhanced Low Power Wide OR Dominos in Sub-70nm CMOS Technologies. J. Semicond., 2006, 27(5): 804.

[11]

Jianwei Wu, Zongguang Yu, Genshen Hong, Rubin Xie. Design of GGNMOS ESD protection device for radiation-hardened 0.18 μm CMOS process. J. Semicond., 2020, 41(12): 122403. doi: 10.1088/1674-4926/41/12/122403

[12]

Junjun Yuan, Zebo Fang, Yanyan Zhu, Bo Yao, Shiyan Liu, Gang He, Yongsheng Tan. Current mechanism and band alignment of Al(Pt)/HfGdO/Ge capacitors. J. Semicond., 2016, 37(3): 034006. doi: 10.1088/1674-4926/37/3/034006

[13]

Bu Jianhui, Bi Jinshun, Liu Mengxin, Han Zhengsheng. A total dose radiation model for deep submicron PDSOI NMOS. J. Semicond., 2011, 32(1): 014002. doi: 10.1088/1674-4926/32/1/014002

[14]

Chen Liu, Yuming Zhang, Yimen Zhang, Hongliang Lü, Bin Lu. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J. Semicond., 2015, 36(12): 124003. doi: 10.1088/1674-4926/36/12/124003

[15]

Neha Gupta, Priyanka Parihar, Vaibhav Neema. Application of source biasing technique for energy efficient DECODER circuit design: memory array application. J. Semicond., 2018, 39(4): 045001. doi: 10.1088/1674-4926/39/4/045001

[16]

Jin Guofen, Wu Huizhen, Liang Jun, Lao yanfeng, Yu Ping, Xu Tianning. Electrical Characteristics of Cubic ZnMgO. J. Semicond., 2007, 28(S1): 167.

[17]

Xiuwen Bi, Hailian Liang, Xiaofeng Gu, Long Huang. Design of novel DDSCR with embedded PNP structure for ESD protection. J. Semicond., 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007

[18]

Jun Ma, Yawei Guo, Yue Wu, Xu Cheng, Xiaoyang Zeng. A 1-V 10-bit 80-MS/s 1.6-mW SAR ADC in 65-nm GP CMOS. J. Semicond., 2013, 34(8): 085014. doi: 10.1088/1674-4926/34/8/085014

[19]

Gao Yong, Liu Jing, Ma Li, Yu Mingbin. Numerical Simulation and Analysis of SiGeC/Si Heterojunction Power Diodes. J. Semicond., 2006, 27(6): 1068.

[20]

Wang Jinhui, Gong Na, Feng Shoubo, Duan Liying, Hou Ligang, Wu Wuchen, Dong Limin. A Novel p-Type Domino AND Gate Design for Sub-65nm CMOS Technologies. J. Semicond., 2007, 28(11): 1818.

Search

Advanced Search >>

GET CITATION

O. Y. Olikh, K. V. Voitenko, R. M. Burbelo, J. M. Olikh. Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure[J]. J. Semicond., 2016, 37(12): 122002. doi: 10.1088/1674-4926/37/12/122002.

Export: BibTex EndNote

Article Metrics

Article views: 1664 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 12 February 2016 Manuscript revised: 23 June 2016 Online: Published: 01 December 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误