J. Semicond. > Volume 37 > Issue 2 > Article Number: 025006

A highly linear power amplifier for WLAN

Jie Jin 1, , , Jia Shi 2, , Baoli Ai 2, and Xuguang Zhang 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus.

Key words: power amplifierInGaP/GaAs HBTEVM (error vector magnitude)adaptive bias circuitWLAN

Abstract: A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus.

Key words: power amplifierInGaP/GaAs HBTEVM (error vector magnitude)adaptive bias circuitWLAN



References:

[1]
[2]

Cripps S C. Advanced techniques for RF power amplifier designs[J]. Boston MA, Artech House, 2002: 10.

[3]

Huang C C, Chen W T, Chen K Y. High efficiency linear power amplifier for IEEE 802.11 g WLAN applications[J]. IEEE Microwave Wireless Compon Lett, 2006, 16(9): 508.

[4]

Youn S N, Chul S P. PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit[J]. IEEE J Solid-State Circuits, 2002, 37(9): 1096.

[5]

Cho Y S, Kang D H. A dual power-mode multi-band power amplifier with envelope tracking for handset applications[J]. IEEE Trans Microw Theory Tech, 2013, 61(4): 1608.

[6]

Jin S S, Moon K H. Dynamic feedback and biasing for a linear CMOS power amplifier with envelope tracking[J]. Proceedings of IEEE MTT-S International Microwave Symposium, Tampa, USA, 2014: 1.

[7]

Dang T S, Tran A D, Ham S J. InGaP/GaAs WLAN power amplifier with detector using on-chip coupler[J]. Proceedings of Asia-Pacific Microwave Conference Proceedings, Seoul, Korea, 2013: 703.

[8]

Dang T S, Tran A D. InGaP/GaAs WLAN power amplifier with detector using on-chip coupler[J]. Proceedings of Asia-Pacific Microwave Conference, 2013: 703.

[9]

Xu H T, Palaskas Y G. A highly linear 25 dBm outphasing power amplifier in 32 nm CMOS for WLAN application[J]. Proceedings of the ESSCIRC, Seville, Spain, 2010: 306.

[10]

Yoon S W, Kim S I. Linearity enhanced 2.4 GHz WLAN HBT power amplifier using digitally-controlled tunable output matching network with pHEMT switch in GaAs BiFET technology[J]. Electron Lett, 2010, 46(23): 1573.

[1]
[2]

Cripps S C. Advanced techniques for RF power amplifier designs[J]. Boston MA, Artech House, 2002: 10.

[3]

Huang C C, Chen W T, Chen K Y. High efficiency linear power amplifier for IEEE 802.11 g WLAN applications[J]. IEEE Microwave Wireless Compon Lett, 2006, 16(9): 508.

[4]

Youn S N, Chul S P. PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit[J]. IEEE J Solid-State Circuits, 2002, 37(9): 1096.

[5]

Cho Y S, Kang D H. A dual power-mode multi-band power amplifier with envelope tracking for handset applications[J]. IEEE Trans Microw Theory Tech, 2013, 61(4): 1608.

[6]

Jin S S, Moon K H. Dynamic feedback and biasing for a linear CMOS power amplifier with envelope tracking[J]. Proceedings of IEEE MTT-S International Microwave Symposium, Tampa, USA, 2014: 1.

[7]

Dang T S, Tran A D, Ham S J. InGaP/GaAs WLAN power amplifier with detector using on-chip coupler[J]. Proceedings of Asia-Pacific Microwave Conference Proceedings, Seoul, Korea, 2013: 703.

[8]

Dang T S, Tran A D. InGaP/GaAs WLAN power amplifier with detector using on-chip coupler[J]. Proceedings of Asia-Pacific Microwave Conference, 2013: 703.

[9]

Xu H T, Palaskas Y G. A highly linear 25 dBm outphasing power amplifier in 32 nm CMOS for WLAN application[J]. Proceedings of the ESSCIRC, Seville, Spain, 2010: 306.

[10]

Yoon S W, Kim S I. Linearity enhanced 2.4 GHz WLAN HBT power amplifier using digitally-controlled tunable output matching network with pHEMT switch in GaAs BiFET technology[J]. Electron Lett, 2010, 46(23): 1573.

[1]

Bi Xiaojun, Zhang Haiying, Chen Liqiang, Huang Qinghua. A Monolithic InGaP/GaAs HBT PA for TD-SCDMA Handset Application. J. Semicond., 2008, 29(10): 1868.

[2]

Chen Yanhu, Shen Huajun, Wang Xiantai, Chen Gaopeng, Liu Xinyu, Yuan Dongfeng, Wang Zuqiang. An InGaP/GaAs HBT MIC Power Amplifier with Power Combining at the X-Band. J. Semicond., 2008, 29(11): 2098.

[3]

Junming Lin, Guohao Zhang, Yaohua Zheng, Sizhen Li, Zhihao Zhang, Sidi Chen. Design of broadband class-F power amplifier with high-order harmonic suppression for S-band application. J. Semicond., 2015, 36(12): 125002. doi: 10.1088/1674-4926/36/12/125002

[4]

Yaohua Zheng, Guohao Zhang, Ruiqing Zheng, Sizhen Li, Junming Lin, Sidi Chen. Design of broadband class-F power amplifier for multiband LTE handsets applications. J. Semicond., 2015, 36(8): 085004. doi: 10.1088/1674-4926/36/8/085004

[5]

Li Chengzhan, Chen Zhijian, Huang Jiwei, Wang Yongping, Ma Chuanhui, Yang Hanbing, Liao Yinghao, Zhou Yong, Liu Bin. An on-chip temperature compensation circuit for an InGaP/GaAs HBT RF power amplifier. J. Semicond., 2011, 32(3): 035009. doi: 10.1088/1674-4926/32/3/035009

[6]

Jie Cui, Lei Chen, Chunlei Kang, Jia Shi, Xuguang Zhang, Baoli Ai, Yi Liu. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/n. J. Semicond., 2013, 34(6): 065001. doi: 10.1088/1674-4926/34/6/065001

[7]

Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Bo Liu, Leiming Zhang, Fei Xiang. A Ku-band wide-tuning-range high-output-power VCO in InGaP/GaAs HBT technology. J. Semicond., 2015, 36(6): 065010. doi: 10.1088/1674-4926/36/6/065010

[8]

Peng Yanjun, Song Jiayou, Wang Zhigong, Tsang K F. A 2.4-GHz SiGe HBT power amplifier with bias current controlling circuit. J. Semicond., 2009, 30(5): 055008. doi: 10.1088/1674-4926/30/5/055008

[9]

Zhu Min, Yin Junjian, Zhang Haiying. A Monolithic InGaP/GaAs HBT Power Amplifier Design with Improved Gain Flatness. J. Semicond., 2008, 29(8): 1441.

[10]

Peng Zhenfei, Yang Shanshan, Feng Yong, Liu Yang, Hong Zhiliang. High efficiency class-I audio power amplifier using a single adaptive supply. J. Semicond., 2012, 33(9): 095002. doi: 10.1088/1674-4926/33/9/095002

[11]

Qin Ge, Wei Liu, Bo Xu, Feng Qian, Changfei Yao. A 77-100 GHz power amplifier using 0.1-μm GaAs PHEMT technology. J. Semicond., 2017, 38(3): 035001. doi: 10.1088/1674-4926/38/3/035001

[12]

Tang Lu, Wang Zhigong, Huang Ting, Li Zhiqun. Design of a Monolithic CMOS LC-Voltage Controlled Oscillator with Low Phase Noise for 4GHz Frequency Synthesizers. J. Semicond., 2006, 27(3): 459.

[13]

Gu Jianzhong, Zhang Jian, Yu Xiaojing, Qian Rong, Li Lingyun, Sun Xiaowei. 32GHz MMIC Power Amplifier Using 0.25μm GaAs PHEMT. J. Semicond., 2006, 27(12): 2160.

[14]

Chen Liqiang, Zhang Jian, Li Zhiqiang, Chen Pufeng, Zhang Haiying. A Monolithic InGaP/GaAs HBT VCO for 5GHz Wireless Applications. J. Semicond., 2007, 28(6): 823.

[15]

Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Min Liu, Yinghui Zhong, Zheng Shi. A broadband regenerative frequency divider in InGaP/GaAs HBT technology. J. Semicond., 2014, 35(7): 075004. doi: 10.1088/1674-4926/35/7/075004

[16]

Tang Lu, Wang Zhigong, Xu Yong, Li Zhiqun. Key Techniques of Frequency Synthesizer for WLAN Receivers. J. Semicond., 2007, 28(4): 542.

[17]

Ye Mao, Zhou Yumei, Wu Bin, Jiang Jianhua. An optimized analog to digital converter for WLAN analog front end. J. Semicond., 2012, 33(4): 045008. doi: 10.1088/1674-4926/33/4/045008

[18]

Li Di, Yang Yintang, Zhu Zhangming, Shi Lichun, Wu Xiaofeng, Wang Jiangan. Improved low-distortion sigma–delta ADC with DWA for WLAN standards. J. Semicond., 2010, 31(2): 025011. doi: 10.1088/1674-4926/31/2/025011

[19]

Gong Zheng, Chu Xiaojie, Lei Qianqian, Lin Min, Shi Yin. CMOS analog baseband circuitry for an IEEE 802.11 b/g/n WLAN transceiver. J. Semicond., 2012, 33(11): 115001. doi: 10.1088/1674-4926/33/11/115001

[20]

Xu Qiming, Shi Yin, Gao Peng, Hu Xueqing, Yan Jun, Xu Hua, Chen Hongda. A DC-Offset Cancellation Scheme in a Direct-Conversion Receiver for IEEE 802.11a WLAN. J. Semicond., 2006, 27(4): 653.

Search

Advanced Search >>

GET CITATION

J Jin, J Shi, B L Ai, X G Zhang. A highly linear power amplifier for WLAN[J]. J. Semicond., 2016, 37(2): 025006. doi: 10.1088/1674-4926/37/2/025006.

Export: BibTex EndNote

Article Metrics

Article views: 1741 Times PDF downloads: 25 Times Cited by: 0 Times

History

Manuscript received: 02 June 2015 Manuscript revised: Online: Published: 01 February 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误