J. Semicond. > Volume 37 > Issue 3 > Article Number: 032002

First-principles calculation on electronic properties of B and N co-doping carbon nanotubes

Jianhao Shi , Tong Zhao , Xuechao Li , Meng Huo and Rundong Wan ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube co-doped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped nanotubes oscillate with the doped compositions. Our study should shed light on the understanding of the properties of doped small nanotubes. This might have potential in designing new nano electronic-devices.

Key words: single-walled carbon nanotubecurvature effectco-dopingbandgaphybrid functional

Abstract: We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube co-doped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped nanotubes oscillate with the doped compositions. Our study should shed light on the understanding of the properties of doped small nanotubes. This might have potential in designing new nano electronic-devices.

Key words: single-walled carbon nanotubecurvature effectco-dopingbandgaphybrid functional



References:

[1]

Iijima S. Helical microtubes of graphite carbon[J]. Nature, 1990, 354: 56.

[2]

Saito R, Dresselhaus M S. Physical properties of carbon nanotubes[J]. London:Imperial College Press, 1998.

[3]

Zhao P, Wang P J, Zhang Z. Electronic transport properties of a diarylethene-based molecular switch with single-walled carbon nanotube electrodes:the effect of chirality[J]. Solid State Commun, 2009, 149: 928.

[4]

Zhao P, Wang P J, Zhang Z. Negative differential resistance in a carbon nanotube-based molecular junction[J]. Phys Lett A, 2010, 374: 1167.

[5]

Ng S H, Wang J, Guo Z P. Single wall carbon nanotube paper as anode for lithium-ion battery[J]. Electrochim Acta, 2005, 51: 23.

[6]

Chen W X, Lee J Y, Liu Z L. The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes[J]. Carbon, 2003, 41: 959.

[7]

Yoon S H, Park C W, Yang H. Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries[J]. Carbon, 2004, 42: 21.

[8]

Vijayaraghavan G, Stevenson K J. Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction[J]. Langmuir, 2007, 23: 5279.

[9]

Whitten P G, Spinks G M. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes[J]. Carbon, 2005, 43: 1891.

[10]

Chen Q L, Xue K H, Shen W. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors[J]. Electrochim Acta, 2004, 49: 4157.

[11]

Barisci J N, Wallance G G, Baughman R H. Electrochemical studies of single-wall carbon nanotubes in aqueous solutions[J]. J Electronanal Chem, 2000, 488: 92.

[12]

Saito R, Fujita M, Drsselhaus G. Electronic structure of graphene tubules based on C60[J]. Phys Rev B, 1992, 60: 1804.

[13]

Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors:graphitic microtubules[J]. Phys Rev Lett, 1992, 68: 1579.

[14]

Saito R, Fujita M, Drsselhaus G. Electronic-structure of chiral graphene tubules[J]. Appl Phys Lett, 1992, 60: 2204.

[15]

White C T, Robertson D H, Mintimire J W. Helical and rotational symmetries of nanoscale graphitic tubules[J]. Phys Rev B, 1993, 47: 5485.

[16]

Guan J, Zhu Z, Tománek D. High stability of faceted nanotubes and fullerenes of multiphase[J]. Phys Rev Lett, 2014, 113: 226801.

[17]

Guo Hongyan, Lu Ning, Dai Jun. Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers[J]. J Phys Chem C, 2014, 118(25): 14051.

[18]

Zhang Zhenhua, Peng Jingcui, Chen Xiaohua. Current properties in doped single-walled carbon nanotubes[J]. Chinese Journal of Semiconductors, 2002, 23(5): 0499.

[19]

Wei Jianwei, Hu Huifang, Zeng Hui. Effects of nitrogen substitutional doping on the nonequilibrium electronic transportation of single wall carbon nanotubes[J]. Chinese Journal of Semiconductors, 2007, 28(8): 1216.

[20]

Miyamoto Y, Rubio A, Cohen M. Chiral tubules of hexagonal BC2N[J]. Phys Rev B, 1994, 50: 4976.

[21]

Enouz S, Steépha O, Cochon J L. C-BN patterned single-walled nanotubes synthesized by laser vaporization[J]. Nano Lett, 2007, 7: 1856.

[22]

Yu S S, Wen Q B, Zheng W T. Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations[J]. Nanotechnology, 2007, 18: 165702.

[23]

Yu S S, Zheng W T, Wen Q B. Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first-principle calculations[J]. IEEE Trans Nanotechnol, 2006, 5: 595.

[24]

Saikia N, Deka R C. First principles study on the boron-nitrogen domains segregated within(5, 5) and(8, 0) single-wall carbon nanotubes:formation energy, electronic structure and reactivity[J]. Computational and Theoretical Chemistry, 2012, 996: 11.

[25]

Jana D, Sun C L, Chen L C. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes[J]. Progress in Materials Science, 2013, 58: 565.

[26]

Saloni J, Kolodziejczyk W, Roszak S. Local and global electronic effects in single and double boron-doped carbon nanotubes[J]. J Phys Chem C, 2010, 114: 1528.

[27]

Kotakoski J, Krasheninnikov A V, Yuchen M. B and N ion implantation into carbon nanotubes:insight from atomistic simulations[J]. Phys Rev B, 2005, 71: 205408.

[28]

Krasheninnikov A V, Nordlund K, Sirviö M. Formation of ion irradiation-induced small-scale defects on walls of carbon nanotubes[J]. Phys Rev B, 2001, 63: 245405.

[29]

Krasheninnikov A V, Nordlund K, Keinonen J. Production of defects in supported carbon nanotubes under ion irradiation[J]. Phys Rev B, 2002, 65: 165423.

[30]

Zhou Z, Gao X P, Yan J. Enhanced lithium absorption in single-walled carbon nanotubes by boron doping[J]. J Phys Chem B, 2004, 108: 90236.

[31]

Fagan S B, Mota R, Silva A J R. Substitutional Si doping in deformed carbon nanotubes[J]. Nano Lett, 2004, 4: 975.

[32]

Rubio A, Corkill J L, Cohen M L. Nonempirical calculations of the electronic properties of new boron nitride graphyne-like nanotubes[J]. Phys Rev B, 1994, 49: 5081.

[33]

Blasé X, Benedict L X, Shirley E L. Hybridization effects and metallicity in small radius carbon nanotubes[J]. Phys Rev Lett, 1994, 72: 12.

[34]

Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential[J]. J Chem Phys, 2003, 118: 8207.

[35]

Krukau A V, Vydrov O A, Izmaylov A F. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J]. Ibid, 2006, 125: 224106.

[36]

Marsman M, Paier J, Stroppa A. Hybrid functionals applied to extended systems[J]. J Phys:Condens Matter, 2008, 20: 064201.

[37]

Wan R D, Peng J H, Zhang X C. Band gaps and radii of metallic zigzag single wall carbon nanotubes[J]. Phys B, 2013, 417: 1.

[38]

Zhao T, Shi J H, Meng H. Electronic properties of C-doped boron nitride nanotubes studied by first-principles calculations[J]. Phys E, 2014, 64: 123.

[39]
[40]

Frisch M J, Trucks G W, Schlegel H B. Gaussian09, RevisionC.01.Gaussian, Inc., Wallingford CT[J]. , 2009.

[41]

Heyd J, Scuseria G E. Efficient hybrid density functional calculations in solids:assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional[J]. Chem Phys, 2004, 121: 1187.

[42]

Ditchfield R, Hehre W J, Pople J A. Self-consistent molecular orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules[J]. J Chem Phys, 1971, 54: 724.

[43]

Heyd J, Scuseria G E. Assessment and validation of a screened Coulomb hybrid density functional[J]. J Chem Phys, 2004, 120: 7274.

[44]

Heyd J, Peralta J E J. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. Chem Phys, 2005, 123: 174101.

[1]

Iijima S. Helical microtubes of graphite carbon[J]. Nature, 1990, 354: 56.

[2]

Saito R, Dresselhaus M S. Physical properties of carbon nanotubes[J]. London:Imperial College Press, 1998.

[3]

Zhao P, Wang P J, Zhang Z. Electronic transport properties of a diarylethene-based molecular switch with single-walled carbon nanotube electrodes:the effect of chirality[J]. Solid State Commun, 2009, 149: 928.

[4]

Zhao P, Wang P J, Zhang Z. Negative differential resistance in a carbon nanotube-based molecular junction[J]. Phys Lett A, 2010, 374: 1167.

[5]

Ng S H, Wang J, Guo Z P. Single wall carbon nanotube paper as anode for lithium-ion battery[J]. Electrochim Acta, 2005, 51: 23.

[6]

Chen W X, Lee J Y, Liu Z L. The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes[J]. Carbon, 2003, 41: 959.

[7]

Yoon S H, Park C W, Yang H. Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries[J]. Carbon, 2004, 42: 21.

[8]

Vijayaraghavan G, Stevenson K J. Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction[J]. Langmuir, 2007, 23: 5279.

[9]

Whitten P G, Spinks G M. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes[J]. Carbon, 2005, 43: 1891.

[10]

Chen Q L, Xue K H, Shen W. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors[J]. Electrochim Acta, 2004, 49: 4157.

[11]

Barisci J N, Wallance G G, Baughman R H. Electrochemical studies of single-wall carbon nanotubes in aqueous solutions[J]. J Electronanal Chem, 2000, 488: 92.

[12]

Saito R, Fujita M, Drsselhaus G. Electronic structure of graphene tubules based on C60[J]. Phys Rev B, 1992, 60: 1804.

[13]

Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors:graphitic microtubules[J]. Phys Rev Lett, 1992, 68: 1579.

[14]

Saito R, Fujita M, Drsselhaus G. Electronic-structure of chiral graphene tubules[J]. Appl Phys Lett, 1992, 60: 2204.

[15]

White C T, Robertson D H, Mintimire J W. Helical and rotational symmetries of nanoscale graphitic tubules[J]. Phys Rev B, 1993, 47: 5485.

[16]

Guan J, Zhu Z, Tománek D. High stability of faceted nanotubes and fullerenes of multiphase[J]. Phys Rev Lett, 2014, 113: 226801.

[17]

Guo Hongyan, Lu Ning, Dai Jun. Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers[J]. J Phys Chem C, 2014, 118(25): 14051.

[18]

Zhang Zhenhua, Peng Jingcui, Chen Xiaohua. Current properties in doped single-walled carbon nanotubes[J]. Chinese Journal of Semiconductors, 2002, 23(5): 0499.

[19]

Wei Jianwei, Hu Huifang, Zeng Hui. Effects of nitrogen substitutional doping on the nonequilibrium electronic transportation of single wall carbon nanotubes[J]. Chinese Journal of Semiconductors, 2007, 28(8): 1216.

[20]

Miyamoto Y, Rubio A, Cohen M. Chiral tubules of hexagonal BC2N[J]. Phys Rev B, 1994, 50: 4976.

[21]

Enouz S, Steépha O, Cochon J L. C-BN patterned single-walled nanotubes synthesized by laser vaporization[J]. Nano Lett, 2007, 7: 1856.

[22]

Yu S S, Wen Q B, Zheng W T. Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations[J]. Nanotechnology, 2007, 18: 165702.

[23]

Yu S S, Zheng W T, Wen Q B. Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first-principle calculations[J]. IEEE Trans Nanotechnol, 2006, 5: 595.

[24]

Saikia N, Deka R C. First principles study on the boron-nitrogen domains segregated within(5, 5) and(8, 0) single-wall carbon nanotubes:formation energy, electronic structure and reactivity[J]. Computational and Theoretical Chemistry, 2012, 996: 11.

[25]

Jana D, Sun C L, Chen L C. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes[J]. Progress in Materials Science, 2013, 58: 565.

[26]

Saloni J, Kolodziejczyk W, Roszak S. Local and global electronic effects in single and double boron-doped carbon nanotubes[J]. J Phys Chem C, 2010, 114: 1528.

[27]

Kotakoski J, Krasheninnikov A V, Yuchen M. B and N ion implantation into carbon nanotubes:insight from atomistic simulations[J]. Phys Rev B, 2005, 71: 205408.

[28]

Krasheninnikov A V, Nordlund K, Sirviö M. Formation of ion irradiation-induced small-scale defects on walls of carbon nanotubes[J]. Phys Rev B, 2001, 63: 245405.

[29]

Krasheninnikov A V, Nordlund K, Keinonen J. Production of defects in supported carbon nanotubes under ion irradiation[J]. Phys Rev B, 2002, 65: 165423.

[30]

Zhou Z, Gao X P, Yan J. Enhanced lithium absorption in single-walled carbon nanotubes by boron doping[J]. J Phys Chem B, 2004, 108: 90236.

[31]

Fagan S B, Mota R, Silva A J R. Substitutional Si doping in deformed carbon nanotubes[J]. Nano Lett, 2004, 4: 975.

[32]

Rubio A, Corkill J L, Cohen M L. Nonempirical calculations of the electronic properties of new boron nitride graphyne-like nanotubes[J]. Phys Rev B, 1994, 49: 5081.

[33]

Blasé X, Benedict L X, Shirley E L. Hybridization effects and metallicity in small radius carbon nanotubes[J]. Phys Rev Lett, 1994, 72: 12.

[34]

Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential[J]. J Chem Phys, 2003, 118: 8207.

[35]

Krukau A V, Vydrov O A, Izmaylov A F. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J]. Ibid, 2006, 125: 224106.

[36]

Marsman M, Paier J, Stroppa A. Hybrid functionals applied to extended systems[J]. J Phys:Condens Matter, 2008, 20: 064201.

[37]

Wan R D, Peng J H, Zhang X C. Band gaps and radii of metallic zigzag single wall carbon nanotubes[J]. Phys B, 2013, 417: 1.

[38]

Zhao T, Shi J H, Meng H. Electronic properties of C-doped boron nitride nanotubes studied by first-principles calculations[J]. Phys E, 2014, 64: 123.

[39]
[40]

Frisch M J, Trucks G W, Schlegel H B. Gaussian09, RevisionC.01.Gaussian, Inc., Wallingford CT[J]. , 2009.

[41]

Heyd J, Scuseria G E. Efficient hybrid density functional calculations in solids:assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional[J]. Chem Phys, 2004, 121: 1187.

[42]

Ditchfield R, Hehre W J, Pople J A. Self-consistent molecular orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules[J]. J Chem Phys, 1971, 54: 724.

[43]

Heyd J, Scuseria G E. Assessment and validation of a screened Coulomb hybrid density functional[J]. J Chem Phys, 2004, 120: 7274.

[44]

Heyd J, Peralta J E J. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. Chem Phys, 2005, 123: 174101.

[1]

Kunyong Kang, Guoyou Gan, Jikang Yan, Jianhong Yi, Jiamin Zhang, Jinghong Du, Wenchao Zhao, Xuequan Rong. Effect of Ge-GeO2 co-doping on non-ohmic behaviour of TiO2-V2O5-Y2O3 varistor ceramics. J. Semicond., 2015, 36(7): 073005. doi: 10.1088/1674-4926/36/7/073005

[2]

Xu Yong, Wang Zhigong, Guan Yu, Qiao Lufeng, Zhao Fei. Improved Design of a Bandgap Voltage Referencewith High Accuracy. J. Semicond., 2006, 27(12): 2209.

[3]

Jianguang Chen, Yueguo Hao, Yuhua Cheng. A novel switched capacitor bandgap reference with a correlated double sampling structure. J. Semicond., 2013, 34(2): 025009. doi: 10.1088/1674-4926/34/2/025009

[4]

Tan P H, Luo X D, Ge W K, Xu Z Y, Zhang Y, Mascarenhas A, Xin H P, Tu C W. Resonant Raman Scattering and Photoluminescence Emissions from Above Bandgap Levels in Dilute GaAsN Alloys. J. Semicond., 2006, 27(3): 397.

[5]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[6]

Miao Qinghai, Lu Shuojin, Zhang Xinghua, Zong Fujian, Zhu Yangjun. The Convergence Characteristic of the Forward I-V Characteristic Curves of a Semiconductor Silicon Barrier at Different Temperatures. J. Semicond., 2008, 29(4): 663.

[7]

Jing Wen, Yumei Wen, Ping Li, Sanshan Wang. Junction-temperature estimation in AlGaInP light-emitting diodes using the luminescence spectra method. J. Semicond., 2016, 37(6): 064010. doi: 10.1088/1674-4926/37/6/064010

[8]

Tanu Goyal, Manoj Kumar Majumder, Brajesh Kumar Kaushik. Propagation delay and power dissipation for different aspect ratio of single-walled carbon nanotube bundled TSV. J. Semicond., 2015, 36(6): 065001. doi: 10.1088/1674-4926/36/6/065001

[9]

Zhou Zekun, Ming Xin, Zhang Bo, Li Zhaoji. A novel precision curvature-compensated bandgap reference. J. Semicond., 2010, 31(1): 015010. doi: 10.1088/1674-4926/31/1/015010

[10]

Xi Liu, Qian Liu, Xiaoshi Jin, Yongrui Zhao, Jong-Ho Lee. Negative voltage bandgap reference with multilevel curvature compensation technique. J. Semicond., 2016, 37(5): 055008. doi: 10.1088/1674-4926/37/5/055008

[11]

Jiang Ta, Yang Huazhong. Bandgap Reference Design by Means of Multiple Point Curvature Compensation. J. Semicond., 2007, 28(4): 490.

[12]

Li Jinghu, Wang Yongsheng, Yu Mingyan, Ye Yizheng. A Piecewise Curvature-Corrected CMOS Bandgap Reference with Negative Feedback. J. Semicond., 2008, 29(10): 1974.

[13]

Fan Tao, Du Bo, Zhang Zheng, Yuan Guoshun. Low voltage bandgap reference with closed loop curvature compensation. J. Semicond., 2009, 30(3): 035006. doi: 10.1088/1674-4926/30/3/035006

[14]

K. Chakraborty, S. Chakraborty, N. B. Manik. Effect of single walled carbon nanotubes on series resistance of Rose Bengal and Methyl Red dye-based organic photovoltaic device. J. Semicond., 2018, 39(9): 094001. doi: 10.1088/1674-4926/39/9/094001

[15]

Bichitra Nanda Sahoo, Byungwoo Choi, Jungmok Seo, Taeyoon Lee. Hybrid functional microfibers for textile electronics and biosensors. J. Semicond., 2018, 39(1): 011009. doi: 10.1088/1674-4926/39/1/011009

[16]

Peng Lianmao, Chen Ging, Liang Xuelei, Che Renchao, Xia Yang, Xue Zengguan, Wu Quande. Fabrication and characteristics of metal particle modulated carbon Nanotube Field-effect and single Electron transistors. J. Semicond., 2003, 24(S1): 170.

[17]

Xingyi Tan, Qiang Li, Yongdan Zhu. First-principles study of p-type ZnO by S-Na co-doping. J. Semicond., 2017, 38(8): 083001. doi: 10.1088/1674-4926/38/8/083001

[18]

Xing Xinpeng, Li Dongmei, Wang Zhihua. A Near-1V 10ppm/℃ CMOS Bandgap Reference with Curvature Compensation. J. Semicond., 2008, 29(1): 24.

[19]

Kai Su, Min Gong, Huaibin Qin, Chen Sun. A multiple transistor combination low-voltage curvature-corrected bandgap reference. J. Semicond., 2013, 34(6): 065010. doi: 10.1088/1674-4926/34/6/065010

[20]

Ma Zhuo, Tan Xiaoqiang, Xie Lunguo, Guo Yang. A curvature calibrated bandgap reference with base–emitter current compensating in a 0.13 μm CMOS process. J. Semicond., 2010, 31(11): 115004. doi: 10.1088/1674-4926/31/11/115004

Search

Advanced Search >>

GET CITATION

J H Shi, T Zhao, X C Li, M Huo, R D Wan. First-principles calculation on electronic properties of B and N co-doping carbon nanotubes[J]. J. Semicond., 2016, 37(3): 032002. doi: 10.1088/1674-4926/37/3/032002.

Export: BibTex EndNote

Article Metrics

Article views: 603 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 09 July 2015 Manuscript revised: Online: Published: 01 March 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误