J. Semicond. > Volume 37 > Issue 3 > Article Number: 033001

Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface

Xinguo Ma 1, 2, , , Jie Yan 1, , Na Liu 1, , Lin Zhu 1, , Bei Wang 1, , Chuyun Huang 1, 2, and Hui Lü 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface has been studied, carried out using first-principles density functional theory(DFT) incorporating the GGA+U formalism. After atomic relaxation of the Ag3PO4(111) surface, it is found that O atoms are exposed to the outermost surface, due to an inward displacement of more than 0.06 nm for the two threefold-coordinated Ag atoms and an outward displacement of about 0.004 nm for three O atoms in the sublayer. The atomic relaxations result in a large transfer of surface charges from the outermost layer to the inner layer, and the surface bonds have a rehybridization, which makes the covalence increase and thus causes the surface bonds to shorten. The calculated energy band structures and density of states of the Ag3PO4(111) surface present that the atomic relaxation narrows the valence band width 0.15 eV and increases the band gap width 0.26 eV. Meantime, the two surface peaks for the unrelaxed structure disappear at the top of the valence band and the bottom of the conduction band after the relaxed structure, which induces the transformation from a metallic to a semi-conducting characteristic.

Key words: silver orthophosphateatomic relaxationelectronic structureDFT

Abstract: The effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface has been studied, carried out using first-principles density functional theory(DFT) incorporating the GGA+U formalism. After atomic relaxation of the Ag3PO4(111) surface, it is found that O atoms are exposed to the outermost surface, due to an inward displacement of more than 0.06 nm for the two threefold-coordinated Ag atoms and an outward displacement of about 0.004 nm for three O atoms in the sublayer. The atomic relaxations result in a large transfer of surface charges from the outermost layer to the inner layer, and the surface bonds have a rehybridization, which makes the covalence increase and thus causes the surface bonds to shorten. The calculated energy band structures and density of states of the Ag3PO4(111) surface present that the atomic relaxation narrows the valence band width 0.15 eV and increases the band gap width 0.26 eV. Meantime, the two surface peaks for the unrelaxed structure disappear at the top of the valence band and the bottom of the conduction band after the relaxed structure, which induces the transformation from a metallic to a semi-conducting characteristic.

Key words: silver orthophosphateatomic relaxationelectronic structureDFT



References:

[1]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37.

[2]

Hoffmann M R, Martin S T, Choi W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95: 69.

[3]

Maeda K, Domen K. Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light[J]. Chem Mater, 2010, 22: 612.

[4]

Yang J H, Wang D G, Han H X. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc Chem Res, 2013, 46: 1900.

[5]

Yi Z G, Ye J H, Kikugawa N. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nat Mater, 2010, 9: 559.

[6]

Gondal M A, Chang X F, Sha W E I. Enhanced photoactivity on Ag/Ag3PO4 composites by plasmonic effect[J]. J Colloid Interf Sci, 2013, 392: 325.

[7]

Bi Y P, Ouyang S X, Umezawa N. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J Am Chem Soc, 2011, 133: 6490.

[8]

Ma J F, Zou J, Li L Y. Nanocomposite of attapulgite-Ag3PO4 for orange Ⅱ photodegradation[J]. Appl Catal B:Environ, 2014, 144: 36.

[9]

Ma X G, Lu B, Li D. Origin of photocatalytic activation of silver orthophosphate from first-principles[J]. J Phys Chem C, 2011, 115: 4680.

[10]

Pan C S, Li D, Ma X G. Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4[J]. Catal Sci Technol, 2011, 1: 1399.

[11]

Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys Rev B, 2001, 63: 155409.

[12]

Lazzeri M, Vittadini A, Selloni A. Erratum:structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys Rev B, 2002, 65: 119901.

[13]

Martin D J, Umezawa N, Chen X W. Facet engineered Ag3PO4 for efficient water photooxidation[J]. Energy Environ Sci, 2013, 6: 3380.

[14]

Zheng B J, Wang X, Liu C. High-efficiently visible light-responsive photocatalysts:Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy[J]. J Mater Chem A, 2013, 1: 12635.

[15]

Segall M D, Lindan P L D, Probert M J. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys:Condens Matter, 2002, 14: 2717.

[16]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865.

[17]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41: 7892.

[18]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13: 5188.

[19]

Dudarev S L, Botton G A, Savrasov S Y. Electron-energy-loss spectra and the structural stability of nickel oxide:an LSDA+U study[J]. Phys Rev B, 1998, 57: 1505.

[20]

Park S G, Magyari-Köpe B, Nishi Y. Electronic correlation effects in reduced rutile TiO2-x within the LDA+U method[J]. Phys Rev B, 2010, 82: 115109.

[21]

Sanchez-Portal D, Artacho E, Soler J M. Projection of plane-wave calculations into atomic orbitals[J]. Solid State Commun, 1995, 95: 685.

[22]

Ng H N, Calvo C, Faggiani R. A new investigation of the structure of silver orthophosphate[J]. Acta Crystallogr B, 1978, 34: 898.

[23]

Bate S P, Kresse G, Gillan M J. A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations[J]. Surf Sci, 1997, 385: 386.

[24]

Ma X G, Tang C Q, Huang J Q. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface[J]. Acta Phys Sin, 2006, 55: 4208.

[1]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37.

[2]

Hoffmann M R, Martin S T, Choi W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95: 69.

[3]

Maeda K, Domen K. Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light[J]. Chem Mater, 2010, 22: 612.

[4]

Yang J H, Wang D G, Han H X. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc Chem Res, 2013, 46: 1900.

[5]

Yi Z G, Ye J H, Kikugawa N. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nat Mater, 2010, 9: 559.

[6]

Gondal M A, Chang X F, Sha W E I. Enhanced photoactivity on Ag/Ag3PO4 composites by plasmonic effect[J]. J Colloid Interf Sci, 2013, 392: 325.

[7]

Bi Y P, Ouyang S X, Umezawa N. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J Am Chem Soc, 2011, 133: 6490.

[8]

Ma J F, Zou J, Li L Y. Nanocomposite of attapulgite-Ag3PO4 for orange Ⅱ photodegradation[J]. Appl Catal B:Environ, 2014, 144: 36.

[9]

Ma X G, Lu B, Li D. Origin of photocatalytic activation of silver orthophosphate from first-principles[J]. J Phys Chem C, 2011, 115: 4680.

[10]

Pan C S, Li D, Ma X G. Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4[J]. Catal Sci Technol, 2011, 1: 1399.

[11]

Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys Rev B, 2001, 63: 155409.

[12]

Lazzeri M, Vittadini A, Selloni A. Erratum:structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys Rev B, 2002, 65: 119901.

[13]

Martin D J, Umezawa N, Chen X W. Facet engineered Ag3PO4 for efficient water photooxidation[J]. Energy Environ Sci, 2013, 6: 3380.

[14]

Zheng B J, Wang X, Liu C. High-efficiently visible light-responsive photocatalysts:Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy[J]. J Mater Chem A, 2013, 1: 12635.

[15]

Segall M D, Lindan P L D, Probert M J. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys:Condens Matter, 2002, 14: 2717.

[16]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865.

[17]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41: 7892.

[18]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13: 5188.

[19]

Dudarev S L, Botton G A, Savrasov S Y. Electron-energy-loss spectra and the structural stability of nickel oxide:an LSDA+U study[J]. Phys Rev B, 1998, 57: 1505.

[20]

Park S G, Magyari-Köpe B, Nishi Y. Electronic correlation effects in reduced rutile TiO2-x within the LDA+U method[J]. Phys Rev B, 2010, 82: 115109.

[21]

Sanchez-Portal D, Artacho E, Soler J M. Projection of plane-wave calculations into atomic orbitals[J]. Solid State Commun, 1995, 95: 685.

[22]

Ng H N, Calvo C, Faggiani R. A new investigation of the structure of silver orthophosphate[J]. Acta Crystallogr B, 1978, 34: 898.

[23]

Bate S P, Kresse G, Gillan M J. A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations[J]. Surf Sci, 1997, 385: 386.

[24]

Ma X G, Tang C Q, Huang J Q. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface[J]. Acta Phys Sin, 2006, 55: 4208.

[1]

Dandeswar Deka, A. Rahman, R. K. Thap. Calculations of DOS and electronic structure in Bi2S3 and Bi2Se3 by using FP-LAPW method. J. Semicond., 2015, 36(2): 022002. doi: 10.1088/1674-4926/36/2/022002

[2]

A Shankar, D P Rai, Sandeep, R K Thapa. Structural, electronic, magnetic and optical properties of neodymium chalcogenides using LSDA+U method. J. Semicond., 2012, 33(8): 082001. doi: 10.1088/1674-4926/33/8/082001

[3]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[4]

Li Jingbo, Wang Linwang, Wei Suhuai. Electronic Structure of Semiconductor Nanocrystals. J. Semicond., 2006, 27(2): 191.

[5]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[6]

Yang Pei, Haibin Wu, Jingmin Liu. Optimized geometry and electronic structure of three-dimensional β-graphyne. J. Semicond., 2015, 36(7): 072002. doi: 10.1088/1674-4926/36/7/072002

[7]

Jinliang Yan, Chong Qu. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. J. Semicond., 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[8]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[9]

Yun Jiangni, Zhang Zhiyong, Deng Zhouhu, Zhang Fuchun. First-Principle Calculation of the Electronic Structure of Sb-Doped SrTiO3. J. Semicond., 2006, 27(9): 1537.

[10]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[11]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[12]

Guipeng Sun, Jinliang Yan, Peijiang Niu, Delan Meng. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J. Semicond., 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005

[13]

Ying Yang, Qing Feng, Weihua Wang, Yin Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

[14]

Yinnü Zhao, Jinliang Yan. Effects of N concentration on electronic and optical properties of N-doped PbTiO3. J. Semicond., 2015, 36(9): 093005. doi: 10.1088/1674-4926/36/9/093005

[15]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[16]

Shujuan Jiao, Jinliang Yan, Guipeng Sun, Yinnü Zhao. Electronic structures and optical properties of Nb-doped SrTiO3 from first principles. J. Semicond., 2016, 37(7): 072001. doi: 10.1088/1674-4926/37/7/072001

[17]

Jiawei Wan, Junhong Guo, Fangren Hu. Identification of strained black phosphorous by Raman spectroscopy. J. Semicond., 2017, 38(4): 042003. doi: 10.1088/1674-4926/38/4/042003

[18]

Qiang Zhao, Maoxiu Zhou, Wei Zhang, Qi Liu, Xiaofeng Li, Ming Liu, Yuehua Dai. Effects of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study. J. Semicond., 2013, 34(3): 032001. doi: 10.1088/1674-4926/34/3/032001

[19]

Zhou Maoxiu, Zhao Qiang, Zhang Wei, Liu Qi, Dai Yuehua. The conductive path in HfO2: first principles study. J. Semicond., 2012, 33(7): 072002. doi: 10.1088/1674-4926/33/7/072002

[20]

Xuechao Li, Jianhao Shi, Rundong Wan. The slabs for the rutile TiO2(110) surface. J. Semicond., 2016, 37(12): 122003. doi: 10.1088/1674-4926/37/12/122003

Search

Advanced Search >>

GET CITATION

X G Ma, J Yan, N Liu, L Zhu, B Wang, C Y Huang, H Lü. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface[J]. J. Semicond., 2016, 37(3): 033001. doi: 10.1088/1674-4926/37/3/033001.

Export: BibTex EndNote

Article Metrics

Article views: 583 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 11 July 2015 Manuscript revised: Online: Published: 01 March 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误