J. Semicond. > Volume 37 > Issue 3 > Article Number: 033002

Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells

Jincheng Zhang , , Chengwu Shi , Junjun Chen , Chao Ying , Ni Wu and Mao Wang

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40) DMF/water solution, and successfully applied as the efficient compact layers for the planar perovskite solar cells. The influence of the WO3 film thickness and the rinsing treatment of CH3NH3PbI3 thin film with isopropanol on the photovoltaic performance of the corresponding perovskite solar cells was systematically investigated. The results revealed that the perovskite solar cell with a 62 nm thick WO3 compact layer achieved a photoelectric conversion efficiency of 5.72%, with a short circuit photocurrent density of 17.39 mA/cm2, an open circuit voltage of 0.58 V and a fill factor of 0.57. The photoelectric conversion efficiency was improved from 5.72% to 7.04% by the isopropanol rinsing treatment.

Key words: WO3 thin filmammonium metatungstate DMF/water solutionpyrolysiscompact layerperovskite solar cell

Abstract: The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40) DMF/water solution, and successfully applied as the efficient compact layers for the planar perovskite solar cells. The influence of the WO3 film thickness and the rinsing treatment of CH3NH3PbI3 thin film with isopropanol on the photovoltaic performance of the corresponding perovskite solar cells was systematically investigated. The results revealed that the perovskite solar cell with a 62 nm thick WO3 compact layer achieved a photoelectric conversion efficiency of 5.72%, with a short circuit photocurrent density of 17.39 mA/cm2, an open circuit voltage of 0.58 V and a fill factor of 0.57. The photoelectric conversion efficiency was improved from 5.72% to 7.04% by the isopropanol rinsing treatment.

Key words: WO3 thin filmammonium metatungstate DMF/water solutionpyrolysiscompact layerperovskite solar cell



References:

[1]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7: 982.

[2]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables(Version 45)[J]. Prog Photovolt:Res Appl, 2015, 23: 1.

[3]

Minemoto T, Murata M. Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Sol Energ Mater Sol Cells, 2015, 133: 8.

[4]

Jeon N J, Noh J H, Kim Y C. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater, 2014, 13: 897.

[5]

Zhou H, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345: 542.

[6]

Xing G, Mathews N, Sun S. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342: 344.

[7]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342: 341.

[8]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale[J]. , 2011, 3: 4088.

[9]

Jeng J Y, Chen K C, Chiang T Y. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Adv Mater, 2014, 26: 4107.

[10]

Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 hetero-junction solar cells[J]. J Am Chem Soc, 2012, 134: 17396.

[11]

Heo J H, Im S H, Noh J H. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nat Photonics, 2013, 7: 486.

[12]

He M, Zheng D, Wang M. High efficiency perovskite solar cells:from complex nanostructure to planar heterojunction[J]. J Mater Chem, 2014, 2: 5994.

[13]

Yong S M, Nikolay T, Ahn B T. One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells[J]. J Alloys Compd, 2013, 547: 113.

[14]

Zheng H D, Tachibana Y, Kalantar-zadeh K. Dye-sensitized solar cells based on WO3[J]. Langmuir, 2010, 26: 19148.

[15]

Xiao M W, Wang L S, Huang X J. Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties[J]. J Alloys Compd, 2009, 470: 486.

[16]

Yang H, Shi R, Zhang K. Synthesis of WO3/TiO2 nanocomposites via sol-gel method[J]. J Alloys Compd, 2005, 398: 200.

[17]

Yan F, Chen D, Li W. The ternary system Na2O-ZnO-WO3:compounds and phase relationships[J]. J Alloys Compd, 2008, 458: 138.

[18]

Mahmood K, Swain B S, Kirmania A R. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material[J]. J Mater Chem, 2015, 3: 9051.

[19]

Jayatissa A H, Cheng S T, Gupta T. Annealing effect on the formation of nanocrystals in thermally evaporated tungsten oxide thin films[J]. Mater Sci Eng, 2004, 109: 269.

[20]

Stankova M, Vilanova X, Llobet E. Influence of the annealing and operating temperatures on the gas-sensing properties of RF sputtered WO3 thin-film sensors[J]. Sens Actuators B:Chem, 2005, 105: 271.

[21]

Vijayalakshmi R, Jayachandran M, Sanjeeviraja C. Structural, electrochromic and FT-IR studies on electrodeposited tungsten trioxide films[J]. Curr Appl Phys, 2003, 3: 171.

[22]

Krasnov Y S, Kolbasov G Y. Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3[J]. Electrochim Acta, 2004, 49: 2425.

[23]

Subrahmanyam A, Karuppasamy A. Optical and electrochromic properties of oxygen sputtered tungsten oxide(WO3) thin films[J]. Sol Energy Mater Sol Cells, 2007, 91: 266.

[24]

Tanner R E, Szekeres A, Gogova D. Study of the surface roughness of CVD-tungsten oxide thin films[J]. Appl Surf Sci, 2003, 218: 163.

[25]

Gesheva K A, Popkirov G, Ganchev M. Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices[J]. Mater Sci Eng, 2005, 119: 232.

[26]

Deepa M, Saxena T K, Singh D P. Spin coated versus dip coated electrochromic tungsten oxide films:structure, morphology, optical and electrochemical properties[J]. Electrochim Acta, 2006, 51: 1974.

[27]

Patra A, Auddy K, Ganguli D. Sol-gel electrochromic WO3 coatings on glass[J]. Mater Lett, 2004, 58: 1059.

[28]

Bertus L M, Enesca A, Duta A. Influence of spray pyrolysis deposition parameters on the optoelectronic properties of WO3 thin films[J]. Thin Solid Films, 2012, 520: 4282.

[29]

Sun Y P, Murphy C J, Reyes-Gil K R. Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis[J]. Int J Hydrogen Energy, 2009, 34: 8476.

[30]

Sivakumar R, Moses Ezhil Raj A, Subramanian B. Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices[J]. Mater Res Bull, 2004, 39: 1479.

[31]

Chen Q, Zhou H, Hong Z. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J Am Chem Soc, 2014, 136: 622.

[1]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7: 982.

[2]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables(Version 45)[J]. Prog Photovolt:Res Appl, 2015, 23: 1.

[3]

Minemoto T, Murata M. Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Sol Energ Mater Sol Cells, 2015, 133: 8.

[4]

Jeon N J, Noh J H, Kim Y C. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater, 2014, 13: 897.

[5]

Zhou H, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345: 542.

[6]

Xing G, Mathews N, Sun S. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342: 344.

[7]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342: 341.

[8]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale[J]. , 2011, 3: 4088.

[9]

Jeng J Y, Chen K C, Chiang T Y. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Adv Mater, 2014, 26: 4107.

[10]

Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 hetero-junction solar cells[J]. J Am Chem Soc, 2012, 134: 17396.

[11]

Heo J H, Im S H, Noh J H. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nat Photonics, 2013, 7: 486.

[12]

He M, Zheng D, Wang M. High efficiency perovskite solar cells:from complex nanostructure to planar heterojunction[J]. J Mater Chem, 2014, 2: 5994.

[13]

Yong S M, Nikolay T, Ahn B T. One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells[J]. J Alloys Compd, 2013, 547: 113.

[14]

Zheng H D, Tachibana Y, Kalantar-zadeh K. Dye-sensitized solar cells based on WO3[J]. Langmuir, 2010, 26: 19148.

[15]

Xiao M W, Wang L S, Huang X J. Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties[J]. J Alloys Compd, 2009, 470: 486.

[16]

Yang H, Shi R, Zhang K. Synthesis of WO3/TiO2 nanocomposites via sol-gel method[J]. J Alloys Compd, 2005, 398: 200.

[17]

Yan F, Chen D, Li W. The ternary system Na2O-ZnO-WO3:compounds and phase relationships[J]. J Alloys Compd, 2008, 458: 138.

[18]

Mahmood K, Swain B S, Kirmania A R. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material[J]. J Mater Chem, 2015, 3: 9051.

[19]

Jayatissa A H, Cheng S T, Gupta T. Annealing effect on the formation of nanocrystals in thermally evaporated tungsten oxide thin films[J]. Mater Sci Eng, 2004, 109: 269.

[20]

Stankova M, Vilanova X, Llobet E. Influence of the annealing and operating temperatures on the gas-sensing properties of RF sputtered WO3 thin-film sensors[J]. Sens Actuators B:Chem, 2005, 105: 271.

[21]

Vijayalakshmi R, Jayachandran M, Sanjeeviraja C. Structural, electrochromic and FT-IR studies on electrodeposited tungsten trioxide films[J]. Curr Appl Phys, 2003, 3: 171.

[22]

Krasnov Y S, Kolbasov G Y. Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3[J]. Electrochim Acta, 2004, 49: 2425.

[23]

Subrahmanyam A, Karuppasamy A. Optical and electrochromic properties of oxygen sputtered tungsten oxide(WO3) thin films[J]. Sol Energy Mater Sol Cells, 2007, 91: 266.

[24]

Tanner R E, Szekeres A, Gogova D. Study of the surface roughness of CVD-tungsten oxide thin films[J]. Appl Surf Sci, 2003, 218: 163.

[25]

Gesheva K A, Popkirov G, Ganchev M. Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices[J]. Mater Sci Eng, 2005, 119: 232.

[26]

Deepa M, Saxena T K, Singh D P. Spin coated versus dip coated electrochromic tungsten oxide films:structure, morphology, optical and electrochemical properties[J]. Electrochim Acta, 2006, 51: 1974.

[27]

Patra A, Auddy K, Ganguli D. Sol-gel electrochromic WO3 coatings on glass[J]. Mater Lett, 2004, 58: 1059.

[28]

Bertus L M, Enesca A, Duta A. Influence of spray pyrolysis deposition parameters on the optoelectronic properties of WO3 thin films[J]. Thin Solid Films, 2012, 520: 4282.

[29]

Sun Y P, Murphy C J, Reyes-Gil K R. Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis[J]. Int J Hydrogen Energy, 2009, 34: 8476.

[30]

Sivakumar R, Moses Ezhil Raj A, Subramanian B. Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices[J]. Mater Res Bull, 2004, 39: 1479.

[31]

Chen Q, Zhou H, Hong Z. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J Am Chem Soc, 2014, 136: 622.

Search

Advanced Search >>

GET CITATION

J C Zhang, C W Shi, J J Chen, C Ying, N Wu, M Wang. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells[J]. J. Semicond., 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002.

Export: BibTex EndNote

Article Metrics

Article views: 1705 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 31 July 2015 Manuscript revised: Online: Published: 01 March 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误