[1] |
Eperon G E, Stranks S D, Menelaou C.
Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7: 982.
|
[2] |
Green M A, Emery K, Hishikawa Y.
Solar cell efficiency tables(Version 45)[J]. Prog Photovolt:Res Appl, 2015, 23: 1.
|
[3] |
Minemoto T, Murata M.
Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Sol Energ Mater Sol Cells, 2015, 133: 8.
|
[4] |
Jeon N J, Noh J H, Kim Y C.
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater, 2014, 13: 897.
|
[5] |
Zhou H, Chen Q, Li G.
Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345: 542.
|
[6] |
Xing G, Mathews N, Sun S.
Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342: 344.
|
[7] |
Stranks S D, Eperon G E, Grancini G.
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342: 341.
|
[8] |
Im J H, Lee C R, Lee J W.
6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale[J]. , 2011, 3: 4088.
|
[9] |
Jeng J Y, Chen K C, Chiang T Y.
Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Adv Mater, 2014, 26: 4107.
|
[10] |
Etgar L, Gao P, Xue Z.
Mesoscopic CH3NH3PbI3/TiO2 hetero-junction solar cells[J]. J Am Chem Soc, 2012, 134: 17396.
|
[11] |
Heo J H, Im S H, Noh J H.
Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nat Photonics, 2013, 7: 486.
|
[12] |
He M, Zheng D, Wang M.
High efficiency perovskite solar cells:from complex nanostructure to planar heterojunction[J]. J Mater Chem, 2014, 2: 5994.
|
[13] |
Yong S M, Nikolay T, Ahn B T.
One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells[J]. J Alloys Compd, 2013, 547: 113.
|
[14] |
Zheng H D, Tachibana Y, Kalantar-zadeh K.
Dye-sensitized solar cells based on WO3[J]. Langmuir, 2010, 26: 19148.
|
[15] |
Xiao M W, Wang L S, Huang X J.
Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties[J]. J Alloys Compd, 2009, 470: 486.
|
[16] |
Yang H, Shi R, Zhang K.
Synthesis of WO3/TiO2 nanocomposites via sol-gel method[J]. J Alloys Compd, 2005, 398: 200.
|
[17] |
Yan F, Chen D, Li W.
The ternary system Na2O-ZnO-WO3:compounds and phase relationships[J]. J Alloys Compd, 2008, 458: 138.
|
[18] |
Mahmood K, Swain B S, Kirmania A R.
Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material[J]. J Mater Chem, 2015, 3: 9051.
|
[19] |
Jayatissa A H, Cheng S T, Gupta T.
Annealing effect on the formation of nanocrystals in thermally evaporated tungsten oxide thin films[J]. Mater Sci Eng, 2004, 109: 269.
|
[20] |
Stankova M, Vilanova X, Llobet E.
Influence of the annealing and operating temperatures on the gas-sensing properties of RF sputtered WO3 thin-film sensors[J]. Sens Actuators B:Chem, 2005, 105: 271.
|
[21] |
Vijayalakshmi R, Jayachandran M, Sanjeeviraja C.
Structural, electrochromic and FT-IR studies on electrodeposited tungsten trioxide films[J]. Curr Appl Phys, 2003, 3: 171.
|
[22] |
Krasnov Y S, Kolbasov G Y.
Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3[J]. Electrochim Acta, 2004, 49: 2425.
|
[23] |
Subrahmanyam A, Karuppasamy A.
Optical and electrochromic properties of oxygen sputtered tungsten oxide(WO3) thin films[J]. Sol Energy Mater Sol Cells, 2007, 91: 266.
|
[24] |
Tanner R E, Szekeres A, Gogova D.
Study of the surface roughness of CVD-tungsten oxide thin films[J]. Appl Surf Sci, 2003, 218: 163.
|
[25] |
Gesheva K A, Popkirov G, Ganchev M.
Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices[J]. Mater Sci Eng, 2005, 119: 232.
|
[26] |
Deepa M, Saxena T K, Singh D P.
Spin coated versus dip coated electrochromic tungsten oxide films:structure, morphology, optical and electrochemical properties[J]. Electrochim Acta, 2006, 51: 1974.
|
[27] |
Patra A, Auddy K, Ganguli D.
Sol-gel electrochromic WO3 coatings on glass[J]. Mater Lett, 2004, 58: 1059.
|
[28] |
Bertus L M, Enesca A, Duta A.
Influence of spray pyrolysis deposition parameters on the optoelectronic properties of WO3 thin films[J]. Thin Solid Films, 2012, 520: 4282.
|
[29] |
Sun Y P, Murphy C J, Reyes-Gil K R.
Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis[J]. Int J Hydrogen Energy, 2009, 34: 8476.
|
[30] |
Sivakumar R, Moses Ezhil Raj A, Subramanian B.
Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices[J]. Mater Res Bull, 2004, 39: 1479.
|
[31] |
Chen Q, Zhou H, Hong Z.
Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J Am Chem Soc, 2014, 136: 622.
|