J. Semicond. > Volume 37 > Issue 9 > Article Number: 091001

Photodetectors based on two dimensional materials

Zheng Lou 1, , Zhongzhu Liang 2, and Guozhen Shen 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on.

Key words: 2D materialsgraphenephotodetector

Abstract: Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on.

Key words: 2D materialsgraphenephotodetector



References:

[1]

Gu Y, Kwak E S, Lensch J L. Near-field scanning photocurrent microscopy of a nanowire photodetector[J]. Appl Phys Lett, 2005, 87(4): 043111. doi: 10.1063/1.1996851

[2]

Tang L, Kocabas S E, Latif S. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna[J]. Nature Photonics, 2008, 2(4): 226. doi: 10.1038/nphoton.2008.30

[3]

Liu H C, Song C Y, SpringThorpe A J. Terahertz quantumwell photodetector[J]. Appl Phys Lett, 2004, 84(20): 4068. doi: 10.1063/1.1751620

[4]

Law J B K, Thong J T L. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time[J]. Appl Phys Lett, 2006, 88(13): 133114. doi: 10.1063/1.2190459

[5]

Assefa S, Xia F, Vlasov Y A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects[J]. Nature, 2010, 464(7285): 80. doi: 10.1038/nature08813

[6]

Butler S Z, Hollen S M, Cao L. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 2013, 7(4): 2898. doi: 10.1021/nn400280c

[7]

Xu M, Liang T, Shi M. Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766. doi: 10.1021/cr300263a

[8]

Koppens F H L, Mueller T, Avouris P. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780. doi: 10.1038/nnano.2014.215

[9]

Bonaccorso F, Sun Z, Hasan T. Graphene photonics and optoelectronics[J]. Nature photonics, 2010, 4(9): 611. doi: 10.1038/nphoton.2010.186

[10]

Ferrari A C, Bonaccorso F, Fal'Ko V. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4598. doi: 10.1039/C4NR01600A

[11]

Sun Z, Hasan T, Torrisi F. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803. doi: 10.1021/nn901703e

[12]

Koppens F H L, Chang D E, Garcia de Abajo F J. Graphene plasmonics:a platform for strong light-matter interactions[J]. Nano Lett, 2011, 11(8): 3370. doi: 10.1021/nl201771h

[13]

Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749. doi: 10.1038/nphoton.2012.262

[14]

Kim K S, Zhao Y, Jang H. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706. doi: 10.1038/nature07719

[15]

Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode[J]. Nature Nanotechnology, 2014, 9(4): 257. doi: 10.1038/nnano.2014.14

[16]

Baugher B W H, Churchill H O H, Yang Y. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262. doi: 10.1038/nnano.2014.25

[17]

Liu M, Yin X, Ulin-Avila E. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64. doi: 10.1038/nature10067

[18]

Dawlaty J M, Shivaraman S, Chandrashekhar M. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Appl Phys Lett, 2008, 92(4): 042116. doi: 10.1063/1.2837539

[19]

Brida D, Tomadin A, Manzoni C. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4.

[20]

Dawlaty J M, Shivaraman S, Strait J. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. Appl Phys Lett, 2008, 93(13): 131905. doi: 10.1063/1.2990753

[21]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[22]

Kuzmenko A B, Van Heumen E, Carbone F. Universal optical conductance of graphite[J]. Phys Rev Lett, 2008, 100(11): 117401. doi: 10.1103/PhysRevLett.100.117401

[23]

Li Z Q, Henriksen E A, Jiang Z. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7): 532. doi: 10.1038/nphys989

[24]

Wang F, Zhang Y, Tian C. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206. doi: 10.1126/science.1152793

[25]

Gan X, Shiue R J, Gao Y. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883. doi: 10.1038/nphoton.2013.253

[26]

Pospischil A, Humer M, Furchi M M. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11): 892. doi: 10.1038/nphoton.2013.240

[27]

Wang X, Cheng Z, Xu K. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888. doi: 10.1038/nphoton.2013.241

[28]

Novoselov K S, Neto A H C. Two-dimensional crystals-based heterostructures:materials with tailored properties. Physica

[29]

Bonaccorso F, Lombardo A, Hasan T. Production and processing of graphene and 2d crystals[J]. Materials Today, 2012, 15(12): 564. doi: 10.1016/S1369-7021(13)70014-2

[30]

Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties[J]. Adv Phys, 1969, 18(73): 193. doi: 10.1080/00018736900101307

[31]

Castellanos-Gomez A, Poot M, Steele G A. Elastic properties of freely suspended MoS2 nanosheets[J]. Adv Mater, 2012, 24(6): 772. doi: 10.1002/adma.201103965

[32]

He K, Poole C, Mak K F. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2[J]. Nano Lett, 2013, 13(6): 2931. doi: 10.1021/nl4013166

[33]

Conley H J, Wang B, Ziegler J I. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13(8): 3626. doi: 10.1021/nl4014748

[34]

Zhu C R, Wang G, Liu B L. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2[J]. Phys Rev B, 2013, 88(12): 121301. doi: 10.1103/PhysRevB.88.121301

[35]

Feng J, Qian X, Huang C W. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nature Photonics, 2012, 6(12): 866. doi: 10.1038/nphoton.2012.285

[36]

Castellanos-Gomez A, Roldán R, Cappelluti E. Local strain engineering in atomically thin MoS2[J]. Nano Lett, 2013, 13(11): 5361. doi: 10.1021/nl402875m

[37]

Britnell L, Ribeiro R M, Eckmann A. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311. doi: 10.1126/science.1235547

[38]

Buscema M, Island J O, Groenendijk D J. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chem Soc Rev, 2015, 44(11): 3691. doi: 10.1039/C5CS00106D

[39]

Rose A. Concepts in photoconductivity and allied problems. Interscience Publishers, 1963

[40]

Saleh B E A, Teich M C, Saleh B E. Fundamentals of photonics. New York:Wiley, 1991

[41]

Konstantatos G, Sargent E H. Nanostructured materials for photon detection[J]. Nature Nanotechnology, 2010, 5(6): 391. doi: 10.1038/nnano.2010.78

[42]

Sze S M, Ng K K. Physics of semiconductor devices. John Wiley & Sons, 2006

[43]

Ehrenreich H, Spaepen F. Solid state physic. Academic Press, 2001

[44]

Slachter A, Bakker F L, Adam J P. Thermally driven spin injection from a ferromagnet into a non-magnetic metal[J]. Nature Physics, 2010, 6(11): 879. doi: 10.1038/nphys1767

[45]

Li Z, Bae M H, Pop E. Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires[J]. Appl Phys Lett, 2014, 105(2): 023107. doi: 10.1063/1.4887365

[46]

Wu J, Schmidt H, Amara K K. Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2[J]. Nano Lett, 2014, 14(5): 2730. doi: 10.1021/nl500666m

[47]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[48]

Mak K F, Ju L, Wang F. Optical spectroscopy of graphene:from the far infrared to the ultraviolet[J]. Solid State Commun, 2012, 152(15): 1341. doi: 10.1016/j.ssc.2012.04.064

[49]

Xia F, Mueller T, Lin Y. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839. doi: 10.1038/nnano.2009.292

[50]

Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications[J]. Nature Photonics, 2010, 4(5): 297. doi: 10.1038/nphoton.2010.40

[51]

Echtermeyer T J, Britnell L, Jasnos P K. Strong plasmonic enhancement of photovoltage in graphene[J]. Nature Communications, 2011, 2: 458. doi: 10.1038/ncomms1464

[52]

Shi S F, Xu X, Ralph D C. Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors[J]. Nano Lett, 2011, 11(4): 1814. doi: 10.1021/nl200522t

[53]

Liu Y, Cheng R, Liao L. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2011, 2: 579. doi: 10.1038/ncomms1589

[54]

Konstantatos G, Badioli M, Gaudreau L. Hybrid graphenequantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363. doi: 10.1038/nnano.2012.60

[55]

Sun Z, Liu Z, Li J. Infrared photodetectors based on CVDgrown graphene and PbS quantum dots with ultrahigh responsivity[J]. Adv Mater, 2012, 24(43): 5878. doi: 10.1002/adma.201202220

[56]

Engel M, Steiner M, Lombardo A. Light-matter interaction in a microcavity-controlled graphene transistor[J]. Nature Communications, 2012, 3: 906. doi: 10.1038/ncomms1911

[57]

Gan X, Mak K F, Gao Y. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity[J]. Nano Lett, 2012, 12(11): 5626. doi: 10.1021/nl302746n

[58]

Furchi M, Urich A, Pospischil A. Microcavity-integrated graphene photodetector[J]. Nano Lett, 2012, 12(6): 2773. doi: 10.1021/nl204512x

[59]

Ferreira A, Peres N M R, Ribeiro R M. Graphene-based photodetector with two cavities[J]. Phys Rev B, 2012, 85(11): 115438. doi: 10.1103/PhysRevB.85.115438

[60]

Gan X, Shiue R J, Gao Y. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883. doi: 10.1038/nphoton.2013.253

[61]

Wang X, Cheng Z, Xu K. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888. doi: 10.1038/nphoton.2013.241

[62]

Zhu X, Yan W, Mortensen N A. Bends and splitters in graphene nanoribbon waveguides[J]. Optics Express, 2013, 21(3): 3486. doi: 10.1364/OE.21.003486

[63]

Kim K, Choi J Y, Kim T. A role for graphene in siliconbased semiconductor devices[J]. Nature, 2011, 479(7373): 338. doi: 10.1038/nature10680

[64]

Youngblood N, Anugrah Y, Ma R. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides[J]. Nano Lett, 2014, 14(5): 2741. doi: 10.1021/nl500712u

[65]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193

[66]

Ayari A, Cobas E, Ogundadegbe O. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides[J]. J Appl Phys, 2007, 101(1): 14507. doi: 10.1063/1.2407388

[67]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[68]

Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271. doi: 10.1021/nl903868w

[69]

Eda G, Yamaguchi H, Voiry D. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett, 2011, 11(12): 5111. doi: 10.1021/nl201874w

[70]

Pu J, Yomogida Y, Liu K K. Highly flexible MoS2 thin-film transistors with ion gel dielectrics[J]. Nano Lett, 2012, 12(8): 4013. doi: 10.1021/nl301335q

[71]

He Q, Zeng Z, Yin Z. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994. doi: 10.1002/smll.v8.19

[72]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12(7): 3695. doi: 10.1021/nl301485q

[73]

Choi W, Cho M Y, Konar A. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J]. Adv Mater, 2012, 24(43): 5832. doi: 10.1002/adma.201201909

[74]

Fontana M, Deppe T, Boyd A K. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions[J]. Scientific Reports, 2013, 3.

[75]

Tsai D S, Liu K K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7(5): 3905. doi: 10.1021/nn305301b

[76]

Wu C C, Jariwala D, Sangwan V K, et al. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning pho-Scripta, 2012, 2012(T146):014006

[77]

Zhang W, Huang J K, Chen C H. High-gain phototransistors based on a CVD MoS2 monolayer[J]. Adv Mater, 2013, 25(25): 3456. doi: 10.1002/adma.v25.25

[78]

Yin Z, Li H, Li H. Single-layer MoS2 phototransistors[J]. ACS Nano, 2011, 6(1): 74.

[79]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[80]

Schedin F, Geim A K, Morozov S V. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652. doi: 10.1038/nmat1967

[81]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12(7): 3788. doi: 10.1021/nl301702r

[82]

Late D J, Liu B, Matte H S S R. Hysteresis in single-layer MoS2 field effect transistors[J]. ACS Nano, 2012, 6(6): 5635. doi: 10.1021/nn301572c

[83]

Tongay S, Zhou J, Ataca C. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating[J]. Nano Lett, 2013, 13(6): 2831. doi: 10.1021/nl4011172

[84]

Perea-López N, Lin Z, Pradhan N R. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage[J]. 2D Materials, 2014, 1(1): 011004. doi: 10.1088/2053-1583/1/1/011004

[85]

Furchi M M, Polyushkin D K, Pospischil A. Mechanisms of photoconductivity in atomically thin MoS2[J]. Nano Lett, 2014, 14(11): 6165. doi: 10.1021/nl502339q

[86]

Tsai D S, Lien D H, Tsai M L. Trilayered MoS metal-semiconductor-metal photodetectors:photogain and radiation resistance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 30. doi: 10.1109/JSTQE.2013.2268383

[87]

Boscher N D, Carmalt C J, Palgrave R G. Atmospheric pressure CVD of molybdenum diselenide films on glass[J]. Chemical Vapor Deposition, 2006, 12(11): 692. doi: 10.1002/(ISSN)1521-3862

[88]

Chang Y H, Zhang W, Zhu Y. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection[J]. ACS Nano, 2014, 8(8): 8582. doi: 10.1021/nn503287m

[89]

Lu X, Utama M I B, Lin J. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates[J]. Nano Lett, 2014, 14(5): 2419. doi: 10.1021/nl5000906

[90]

Shaw J C, Zhou H, Chen Y. Chemical vapor deposition growth of monolayer WSe2 nanosheets[J]. Nano Res, 2014, 7(4): 511. doi: 10.1007/s12274-014-0417-z

[91]

Shim G W, Yoo K, Seo S B. Large-area single-layer MoSe2 and its van der Waals heterostructures[J]. ACS Nano, 2014, 8(7): 6655. doi: 10.1021/nn405685j

[92]

Xia J, Huang X, Liu L Z. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors[J]. Nanoscale, 2014, 6(15): 8949. doi: 10.1039/C4NR02311K

[93]

Abderrahmane A, Ko P J, Thu T V. High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors[J]. Nanotechnology, 2014, 25(36): 365202. doi: 10.1088/0957-4484/25/36/365202

[94]

Perea-López N, Elías A L, Berkdemir A. Photosensor device based on few-layered WS2 films[J]. Advanced Functional Materials, 2013, 23(44): 5511. doi: 10.1002/adfm.v23.44

[95]

Huo N, Yang S, Wei Z. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes[J]. Scientific Reports, 2014, 4: 5209.

[96]

Zhang W, Chiu M H, Chen C H. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers[J]. ACS Nano, 2014, 8(8): 8653. doi: 10.1021/nn503521c

[97]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84(17): 3301. doi: 10.1063/1.1723695

[98]

Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics[J]. Appl Phys Lett, 2013, 103(10): 103501. doi: 10.1063/1.4820408

[99]

Huang J K, Pu J, Hsu C L. Large-area synthesis of highly crystalline WSe2 monolayers and device applications[J]. ACS Nano, 2013, 8(1): 923.

[100]

Ross J S, Klement P, Jones A M. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions[J]. Nature Nanotechnology, 2014, 9(4): 268. doi: 10.1038/nnano.2014.26

[101]

Groenendijk D J, Buscema M, Steele G A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device[J]. Nano Lett, 2014, 14(10): 5846. doi: 10.1021/nl502741k

[102]

Baugher B W H, Churchill H O H, Yang Y. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262. doi: 10.1038/nnano.2014.25

[103]

Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode[J]. Nature Nanotechnology, 2014, 9(4): 257. doi: 10.1038/nnano.2014.14

[104]

Hu P A, Wen Z, Wang L. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2012, 6(7): 5988. doi: 10.1021/nn300889c

[105]

Late D J, Liu B, Luo J. GaS and GaSe ultrathin layer transistors[J]. Adv Mater, 2012, 24(26): 3549. doi: 10.1002/adma.201201361

[106]

Liu H, Peide D Y. Dual-gate MOSFET with atomic-layerdeposited as top-gate dielectric[J]. IEEE Electron Device Lett, 2012, 33(4): 546. doi: 10.1109/LED.2012.2184520

[107]

Hu P A, Wang L, Yoon M. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates[J]. Nano Lett, 2013, 13(4): 1649. doi: 10.1021/nl400107k

[108]

Jacobs-Gedrim R B, Shanmugam M, Jain N. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets[J]. ACS Nano, 2013, 8(1): 514.

[109]

Mudd G W, Svatek S A, Ren T. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement[J]. Adv Mater, 2013, 25(40): 5714. doi: 10.1002/adma.v25.40

[110]

Capozzi V, Montagna M. Optical spectroscopy of extrinsic recombinations in gallium selenide[J]. Phys Rev B, 1989, 40(5): 3182. doi: 10.1103/PhysRevB.40.3182

[111]

Alekperov O Z, Godjaev M O, Zarbaliev M Z. Interband photoconductivity in layer semiconductors GaSe, InSe and GaS[J]. Solid State Commun, 1991, 77(1): 65. doi: 10.1016/0038-1098(91)90428-X

[112]

Genut M, Margulis L, Hodes G. Preparation and microstructure WS2 thin films[J]. Thin Solid Films, 1992, 217(1): 91.

[113]

Plucinski L, Johnson R L, Kowalski B J. Electronic band structure of GaSe (0001):angle-resolved photoemission and ab initio theory[J]. Phys Rev B, 2003, 68(12): 125304. doi: 10.1103/PhysRevB.68.125304

[114]

Ho C H, Lin S L. Optical properties of the interband transitions of layered gallium sulfide[J]. J Appl Phys, 2006, 100(8): 3508.

[115]

Sánchez-Royo J F, Pellicer-Porres J, Segura A. Angleresolved photoemission study and first-principles calculation of the electronic structure of GaTe[J]. Phys Rev B, 2002, 65(11): 115201. doi: 10.1103/PhysRevB.65.115201

[116]

De Groot C H, Moodera J S. Growth and characterization of a novel In2Se3 structure[J]. J Appl Phys, 2001, 89(8): 4336. doi: 10.1063/1.1355287

[117]

Sánchez-Royo J F, Segura A, Lang O. Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy[J]. J Appl Phys, 2001, 90(6): 2818. doi: 10.1063/1.1389479

[118]

Sreekumar R, Jayakrishnan R, Kartha C S. Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation[J]. J Appl Phys, 2008, 103(2): 023709. doi: 10.1063/1.2829812

[119]

Liu F, Shimotani H, Shang H. High-sensitivity photodetectors based on multilayer GaTe flakes[J]. ACS Nano, 2014, 8(1): 752. doi: 10.1021/nn4054039

[120]

Tamalampudi S R, Lu Y Y, Kumar U R, et al. High performance

[121]

Lei S, Ge L, Najmaei S. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263. doi: 10.1021/nn405036u

[122]

De D, Manongdo J, See S. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes[J]. Nanotechnology, 2012, 24(2): 025202.

[123]

Tao Y, Wu X, Wang W. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film[J]. Journal of Materials Chemistry C, 2015, 3(6): 1347. doi: 10.1039/C4TC02325K

[124]

Su G, Hadjiev V G, Loya P E. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Lett, 2014, 15(1): 506.

[1]

Gu Y, Kwak E S, Lensch J L. Near-field scanning photocurrent microscopy of a nanowire photodetector[J]. Appl Phys Lett, 2005, 87(4): 043111. doi: 10.1063/1.1996851

[2]

Tang L, Kocabas S E, Latif S. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna[J]. Nature Photonics, 2008, 2(4): 226. doi: 10.1038/nphoton.2008.30

[3]

Liu H C, Song C Y, SpringThorpe A J. Terahertz quantumwell photodetector[J]. Appl Phys Lett, 2004, 84(20): 4068. doi: 10.1063/1.1751620

[4]

Law J B K, Thong J T L. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time[J]. Appl Phys Lett, 2006, 88(13): 133114. doi: 10.1063/1.2190459

[5]

Assefa S, Xia F, Vlasov Y A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects[J]. Nature, 2010, 464(7285): 80. doi: 10.1038/nature08813

[6]

Butler S Z, Hollen S M, Cao L. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 2013, 7(4): 2898. doi: 10.1021/nn400280c

[7]

Xu M, Liang T, Shi M. Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766. doi: 10.1021/cr300263a

[8]

Koppens F H L, Mueller T, Avouris P. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780. doi: 10.1038/nnano.2014.215

[9]

Bonaccorso F, Sun Z, Hasan T. Graphene photonics and optoelectronics[J]. Nature photonics, 2010, 4(9): 611. doi: 10.1038/nphoton.2010.186

[10]

Ferrari A C, Bonaccorso F, Fal'Ko V. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4598. doi: 10.1039/C4NR01600A

[11]

Sun Z, Hasan T, Torrisi F. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803. doi: 10.1021/nn901703e

[12]

Koppens F H L, Chang D E, Garcia de Abajo F J. Graphene plasmonics:a platform for strong light-matter interactions[J]. Nano Lett, 2011, 11(8): 3370. doi: 10.1021/nl201771h

[13]

Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749. doi: 10.1038/nphoton.2012.262

[14]

Kim K S, Zhao Y, Jang H. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706. doi: 10.1038/nature07719

[15]

Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode[J]. Nature Nanotechnology, 2014, 9(4): 257. doi: 10.1038/nnano.2014.14

[16]

Baugher B W H, Churchill H O H, Yang Y. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262. doi: 10.1038/nnano.2014.25

[17]

Liu M, Yin X, Ulin-Avila E. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64. doi: 10.1038/nature10067

[18]

Dawlaty J M, Shivaraman S, Chandrashekhar M. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Appl Phys Lett, 2008, 92(4): 042116. doi: 10.1063/1.2837539

[19]

Brida D, Tomadin A, Manzoni C. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4.

[20]

Dawlaty J M, Shivaraman S, Strait J. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. Appl Phys Lett, 2008, 93(13): 131905. doi: 10.1063/1.2990753

[21]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[22]

Kuzmenko A B, Van Heumen E, Carbone F. Universal optical conductance of graphite[J]. Phys Rev Lett, 2008, 100(11): 117401. doi: 10.1103/PhysRevLett.100.117401

[23]

Li Z Q, Henriksen E A, Jiang Z. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7): 532. doi: 10.1038/nphys989

[24]

Wang F, Zhang Y, Tian C. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206. doi: 10.1126/science.1152793

[25]

Gan X, Shiue R J, Gao Y. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883. doi: 10.1038/nphoton.2013.253

[26]

Pospischil A, Humer M, Furchi M M. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11): 892. doi: 10.1038/nphoton.2013.240

[27]

Wang X, Cheng Z, Xu K. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888. doi: 10.1038/nphoton.2013.241

[28]

Novoselov K S, Neto A H C. Two-dimensional crystals-based heterostructures:materials with tailored properties. Physica

[29]

Bonaccorso F, Lombardo A, Hasan T. Production and processing of graphene and 2d crystals[J]. Materials Today, 2012, 15(12): 564. doi: 10.1016/S1369-7021(13)70014-2

[30]

Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties[J]. Adv Phys, 1969, 18(73): 193. doi: 10.1080/00018736900101307

[31]

Castellanos-Gomez A, Poot M, Steele G A. Elastic properties of freely suspended MoS2 nanosheets[J]. Adv Mater, 2012, 24(6): 772. doi: 10.1002/adma.201103965

[32]

He K, Poole C, Mak K F. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2[J]. Nano Lett, 2013, 13(6): 2931. doi: 10.1021/nl4013166

[33]

Conley H J, Wang B, Ziegler J I. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13(8): 3626. doi: 10.1021/nl4014748

[34]

Zhu C R, Wang G, Liu B L. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2[J]. Phys Rev B, 2013, 88(12): 121301. doi: 10.1103/PhysRevB.88.121301

[35]

Feng J, Qian X, Huang C W. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nature Photonics, 2012, 6(12): 866. doi: 10.1038/nphoton.2012.285

[36]

Castellanos-Gomez A, Roldán R, Cappelluti E. Local strain engineering in atomically thin MoS2[J]. Nano Lett, 2013, 13(11): 5361. doi: 10.1021/nl402875m

[37]

Britnell L, Ribeiro R M, Eckmann A. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311. doi: 10.1126/science.1235547

[38]

Buscema M, Island J O, Groenendijk D J. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chem Soc Rev, 2015, 44(11): 3691. doi: 10.1039/C5CS00106D

[39]

Rose A. Concepts in photoconductivity and allied problems. Interscience Publishers, 1963

[40]

Saleh B E A, Teich M C, Saleh B E. Fundamentals of photonics. New York:Wiley, 1991

[41]

Konstantatos G, Sargent E H. Nanostructured materials for photon detection[J]. Nature Nanotechnology, 2010, 5(6): 391. doi: 10.1038/nnano.2010.78

[42]

Sze S M, Ng K K. Physics of semiconductor devices. John Wiley & Sons, 2006

[43]

Ehrenreich H, Spaepen F. Solid state physic. Academic Press, 2001

[44]

Slachter A, Bakker F L, Adam J P. Thermally driven spin injection from a ferromagnet into a non-magnetic metal[J]. Nature Physics, 2010, 6(11): 879. doi: 10.1038/nphys1767

[45]

Li Z, Bae M H, Pop E. Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires[J]. Appl Phys Lett, 2014, 105(2): 023107. doi: 10.1063/1.4887365

[46]

Wu J, Schmidt H, Amara K K. Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2[J]. Nano Lett, 2014, 14(5): 2730. doi: 10.1021/nl500666m

[47]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[48]

Mak K F, Ju L, Wang F. Optical spectroscopy of graphene:from the far infrared to the ultraviolet[J]. Solid State Commun, 2012, 152(15): 1341. doi: 10.1016/j.ssc.2012.04.064

[49]

Xia F, Mueller T, Lin Y. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839. doi: 10.1038/nnano.2009.292

[50]

Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications[J]. Nature Photonics, 2010, 4(5): 297. doi: 10.1038/nphoton.2010.40

[51]

Echtermeyer T J, Britnell L, Jasnos P K. Strong plasmonic enhancement of photovoltage in graphene[J]. Nature Communications, 2011, 2: 458. doi: 10.1038/ncomms1464

[52]

Shi S F, Xu X, Ralph D C. Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors[J]. Nano Lett, 2011, 11(4): 1814. doi: 10.1021/nl200522t

[53]

Liu Y, Cheng R, Liao L. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2011, 2: 579. doi: 10.1038/ncomms1589

[54]

Konstantatos G, Badioli M, Gaudreau L. Hybrid graphenequantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363. doi: 10.1038/nnano.2012.60

[55]

Sun Z, Liu Z, Li J. Infrared photodetectors based on CVDgrown graphene and PbS quantum dots with ultrahigh responsivity[J]. Adv Mater, 2012, 24(43): 5878. doi: 10.1002/adma.201202220

[56]

Engel M, Steiner M, Lombardo A. Light-matter interaction in a microcavity-controlled graphene transistor[J]. Nature Communications, 2012, 3: 906. doi: 10.1038/ncomms1911

[57]

Gan X, Mak K F, Gao Y. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity[J]. Nano Lett, 2012, 12(11): 5626. doi: 10.1021/nl302746n

[58]

Furchi M, Urich A, Pospischil A. Microcavity-integrated graphene photodetector[J]. Nano Lett, 2012, 12(6): 2773. doi: 10.1021/nl204512x

[59]

Ferreira A, Peres N M R, Ribeiro R M. Graphene-based photodetector with two cavities[J]. Phys Rev B, 2012, 85(11): 115438. doi: 10.1103/PhysRevB.85.115438

[60]

Gan X, Shiue R J, Gao Y. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883. doi: 10.1038/nphoton.2013.253

[61]

Wang X, Cheng Z, Xu K. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888. doi: 10.1038/nphoton.2013.241

[62]

Zhu X, Yan W, Mortensen N A. Bends and splitters in graphene nanoribbon waveguides[J]. Optics Express, 2013, 21(3): 3486. doi: 10.1364/OE.21.003486

[63]

Kim K, Choi J Y, Kim T. A role for graphene in siliconbased semiconductor devices[J]. Nature, 2011, 479(7373): 338. doi: 10.1038/nature10680

[64]

Youngblood N, Anugrah Y, Ma R. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides[J]. Nano Lett, 2014, 14(5): 2741. doi: 10.1021/nl500712u

[65]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193

[66]

Ayari A, Cobas E, Ogundadegbe O. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides[J]. J Appl Phys, 2007, 101(1): 14507. doi: 10.1063/1.2407388

[67]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[68]

Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271. doi: 10.1021/nl903868w

[69]

Eda G, Yamaguchi H, Voiry D. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett, 2011, 11(12): 5111. doi: 10.1021/nl201874w

[70]

Pu J, Yomogida Y, Liu K K. Highly flexible MoS2 thin-film transistors with ion gel dielectrics[J]. Nano Lett, 2012, 12(8): 4013. doi: 10.1021/nl301335q

[71]

He Q, Zeng Z, Yin Z. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994. doi: 10.1002/smll.v8.19

[72]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12(7): 3695. doi: 10.1021/nl301485q

[73]

Choi W, Cho M Y, Konar A. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J]. Adv Mater, 2012, 24(43): 5832. doi: 10.1002/adma.201201909

[74]

Fontana M, Deppe T, Boyd A K. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions[J]. Scientific Reports, 2013, 3.

[75]

Tsai D S, Liu K K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7(5): 3905. doi: 10.1021/nn305301b

[76]

Wu C C, Jariwala D, Sangwan V K, et al. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning pho-Scripta, 2012, 2012(T146):014006

[77]

Zhang W, Huang J K, Chen C H. High-gain phototransistors based on a CVD MoS2 monolayer[J]. Adv Mater, 2013, 25(25): 3456. doi: 10.1002/adma.v25.25

[78]

Yin Z, Li H, Li H. Single-layer MoS2 phototransistors[J]. ACS Nano, 2011, 6(1): 74.

[79]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[80]

Schedin F, Geim A K, Morozov S V. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652. doi: 10.1038/nmat1967

[81]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12(7): 3788. doi: 10.1021/nl301702r

[82]

Late D J, Liu B, Matte H S S R. Hysteresis in single-layer MoS2 field effect transistors[J]. ACS Nano, 2012, 6(6): 5635. doi: 10.1021/nn301572c

[83]

Tongay S, Zhou J, Ataca C. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating[J]. Nano Lett, 2013, 13(6): 2831. doi: 10.1021/nl4011172

[84]

Perea-López N, Lin Z, Pradhan N R. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage[J]. 2D Materials, 2014, 1(1): 011004. doi: 10.1088/2053-1583/1/1/011004

[85]

Furchi M M, Polyushkin D K, Pospischil A. Mechanisms of photoconductivity in atomically thin MoS2[J]. Nano Lett, 2014, 14(11): 6165. doi: 10.1021/nl502339q

[86]

Tsai D S, Lien D H, Tsai M L. Trilayered MoS metal-semiconductor-metal photodetectors:photogain and radiation resistance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 30. doi: 10.1109/JSTQE.2013.2268383

[87]

Boscher N D, Carmalt C J, Palgrave R G. Atmospheric pressure CVD of molybdenum diselenide films on glass[J]. Chemical Vapor Deposition, 2006, 12(11): 692. doi: 10.1002/(ISSN)1521-3862

[88]

Chang Y H, Zhang W, Zhu Y. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection[J]. ACS Nano, 2014, 8(8): 8582. doi: 10.1021/nn503287m

[89]

Lu X, Utama M I B, Lin J. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates[J]. Nano Lett, 2014, 14(5): 2419. doi: 10.1021/nl5000906

[90]

Shaw J C, Zhou H, Chen Y. Chemical vapor deposition growth of monolayer WSe2 nanosheets[J]. Nano Res, 2014, 7(4): 511. doi: 10.1007/s12274-014-0417-z

[91]

Shim G W, Yoo K, Seo S B. Large-area single-layer MoSe2 and its van der Waals heterostructures[J]. ACS Nano, 2014, 8(7): 6655. doi: 10.1021/nn405685j

[92]

Xia J, Huang X, Liu L Z. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors[J]. Nanoscale, 2014, 6(15): 8949. doi: 10.1039/C4NR02311K

[93]

Abderrahmane A, Ko P J, Thu T V. High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors[J]. Nanotechnology, 2014, 25(36): 365202. doi: 10.1088/0957-4484/25/36/365202

[94]

Perea-López N, Elías A L, Berkdemir A. Photosensor device based on few-layered WS2 films[J]. Advanced Functional Materials, 2013, 23(44): 5511. doi: 10.1002/adfm.v23.44

[95]

Huo N, Yang S, Wei Z. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes[J]. Scientific Reports, 2014, 4: 5209.

[96]

Zhang W, Chiu M H, Chen C H. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers[J]. ACS Nano, 2014, 8(8): 8653. doi: 10.1021/nn503521c

[97]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84(17): 3301. doi: 10.1063/1.1723695

[98]

Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics[J]. Appl Phys Lett, 2013, 103(10): 103501. doi: 10.1063/1.4820408

[99]

Huang J K, Pu J, Hsu C L. Large-area synthesis of highly crystalline WSe2 monolayers and device applications[J]. ACS Nano, 2013, 8(1): 923.

[100]

Ross J S, Klement P, Jones A M. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions[J]. Nature Nanotechnology, 2014, 9(4): 268. doi: 10.1038/nnano.2014.26

[101]

Groenendijk D J, Buscema M, Steele G A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device[J]. Nano Lett, 2014, 14(10): 5846. doi: 10.1021/nl502741k

[102]

Baugher B W H, Churchill H O H, Yang Y. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262. doi: 10.1038/nnano.2014.25

[103]

Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode[J]. Nature Nanotechnology, 2014, 9(4): 257. doi: 10.1038/nnano.2014.14

[104]

Hu P A, Wen Z, Wang L. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2012, 6(7): 5988. doi: 10.1021/nn300889c

[105]

Late D J, Liu B, Luo J. GaS and GaSe ultrathin layer transistors[J]. Adv Mater, 2012, 24(26): 3549. doi: 10.1002/adma.201201361

[106]

Liu H, Peide D Y. Dual-gate MOSFET with atomic-layerdeposited as top-gate dielectric[J]. IEEE Electron Device Lett, 2012, 33(4): 546. doi: 10.1109/LED.2012.2184520

[107]

Hu P A, Wang L, Yoon M. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates[J]. Nano Lett, 2013, 13(4): 1649. doi: 10.1021/nl400107k

[108]

Jacobs-Gedrim R B, Shanmugam M, Jain N. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets[J]. ACS Nano, 2013, 8(1): 514.

[109]

Mudd G W, Svatek S A, Ren T. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement[J]. Adv Mater, 2013, 25(40): 5714. doi: 10.1002/adma.v25.40

[110]

Capozzi V, Montagna M. Optical spectroscopy of extrinsic recombinations in gallium selenide[J]. Phys Rev B, 1989, 40(5): 3182. doi: 10.1103/PhysRevB.40.3182

[111]

Alekperov O Z, Godjaev M O, Zarbaliev M Z. Interband photoconductivity in layer semiconductors GaSe, InSe and GaS[J]. Solid State Commun, 1991, 77(1): 65. doi: 10.1016/0038-1098(91)90428-X

[112]

Genut M, Margulis L, Hodes G. Preparation and microstructure WS2 thin films[J]. Thin Solid Films, 1992, 217(1): 91.

[113]

Plucinski L, Johnson R L, Kowalski B J. Electronic band structure of GaSe (0001):angle-resolved photoemission and ab initio theory[J]. Phys Rev B, 2003, 68(12): 125304. doi: 10.1103/PhysRevB.68.125304

[114]

Ho C H, Lin S L. Optical properties of the interband transitions of layered gallium sulfide[J]. J Appl Phys, 2006, 100(8): 3508.

[115]

Sánchez-Royo J F, Pellicer-Porres J, Segura A. Angleresolved photoemission study and first-principles calculation of the electronic structure of GaTe[J]. Phys Rev B, 2002, 65(11): 115201. doi: 10.1103/PhysRevB.65.115201

[116]

De Groot C H, Moodera J S. Growth and characterization of a novel In2Se3 structure[J]. J Appl Phys, 2001, 89(8): 4336. doi: 10.1063/1.1355287

[117]

Sánchez-Royo J F, Segura A, Lang O. Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy[J]. J Appl Phys, 2001, 90(6): 2818. doi: 10.1063/1.1389479

[118]

Sreekumar R, Jayakrishnan R, Kartha C S. Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation[J]. J Appl Phys, 2008, 103(2): 023709. doi: 10.1063/1.2829812

[119]

Liu F, Shimotani H, Shang H. High-sensitivity photodetectors based on multilayer GaTe flakes[J]. ACS Nano, 2014, 8(1): 752. doi: 10.1021/nn4054039

[120]

Tamalampudi S R, Lu Y Y, Kumar U R, et al. High performance

[121]

Lei S, Ge L, Najmaei S. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263. doi: 10.1021/nn405036u

[122]

De D, Manongdo J, See S. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes[J]. Nanotechnology, 2012, 24(2): 025202.

[123]

Tao Y, Wu X, Wang W. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film[J]. Journal of Materials Chemistry C, 2015, 3(6): 1347. doi: 10.1039/C4TC02325K

[124]

Su G, Hadjiev V G, Loya P E. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Lett, 2014, 15(1): 506.

[1]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[2]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[3]

Buwen Cheng, Cheng Li, Zhi Liu, Chunlai Xue. Research progress of Si-based germanium materials and devices. J. Semicond., 2016, 37(8): 081001. doi: 10.1088/1674-4926/37/8/081001

[4]

Yan Yao, Xiong Liu, Li Yuan, Zhaohua Zhang, Tianling Ren. A novel PIN photodetector with double linear arrays for rainfall prediction. J. Semicond., 2015, 36(9): 094011. doi: 10.1088/1674-4926/36/9/094011

[5]

Jiang Ran, Meng Lingguo, Zhang Xijian, Hyung-Suk Jung, Cheol Seong Hwang. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. J. Semicond., 2012, 33(9): 093004. doi: 10.1088/1674-4926/33/9/093004

[6]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[7]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[8]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[9]

Zheng Lou, Xiaoli Yang, Haoran Chen, Zhongzhu Liang. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J. Semicond., 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002

[10]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[11]

Yue Li, Ming Gong, Hualing Zeng. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor. J. Semicond., 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002

[12]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[13]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[14]

Lü Jihe, Huang Hui, Ren Xiaomin, Miao Ang, Li Yiqun, Wang Rui, Huang Yongqing, Wang Qi. A Monolithic Integrated Long-Wavelength Tunable Photodetector Based on a Low Temperature Buffer Layer. J. Semicond., 2007, 28(11): 1807.

[15]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[16]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[17]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[18]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[19]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[20]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

Search

Advanced Search >>

GET CITATION

Z Lou, Z Z Liang, G Z Shen. Photodetectors based on two dimensional materials[J]. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001.

Export: BibTex EndNote

Article Metrics

Article views: 2091 Times PDF downloads: 116 Times Cited by: 0 Times

History

Manuscript received: 30 July 2016 Manuscript revised: Online: Published: 01 September 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误