J Wen, Q Liu, C Liu, Y Z Wang, B Zhang, Z Y Xue, Z F Di, W J Yu, Q T Zhao. Investigation of Coulomb scattering on sSi/Si0.5Ge0.5/sSOI quantum-well p-MOSFETs[J]. J. Semicond., 2016, 37(9): 094002. doi: 10.1088/1674-4926/37/9/094002.
Jiao Wen 1, 2, , Qiang Liu 1, 2, , Chang Liu 2, , Yize Wang 2, , Bo Zhang 2, , Zhongying Xue 2, , Zengfeng Di 2, , Wenjie Yu 2, , and Qingtai Zhao 3,
Abstract: sSi/Si0.5Ge0.5/sSOI quantum-well (QW) p-MOSFETs with HfO2/TiN gate stack were fabricated and characterized. According to the low temperature experimental results, carrier mobility of the strained Si0.5Ge0.5 QW p-MOSFET was mainly governed by phonon scattering from 300 to 150 K and Coulomb scattering below 150 K, respectively. Coulomb scattering was intensified by the accumulated inversion charges in the Si cap layer of this Si/SiGe heterostructure, which led to a degradation of carrier mobility in the SiGe channel, especially at low temperature.
Key words: SiGe, quantum-well, hole mobility, Coulomb scattering
Abstract: sSi/Si0.5Ge0.5/sSOI quantum-well (QW) p-MOSFETs with HfO2/TiN gate stack were fabricated and characterized. According to the low temperature experimental results, carrier mobility of the strained Si0.5Ge0.5 QW p-MOSFET was mainly governed by phonon scattering from 300 to 150 K and Coulomb scattering below 150 K, respectively. Coulomb scattering was intensified by the accumulated inversion charges in the Si cap layer of this Si/SiGe heterostructure, which led to a degradation of carrier mobility in the SiGe channel, especially at low temperature.
Key words:
SiGe, quantum-well, hole mobility, Coulomb scattering
References:
[1] |
Hill R J W, Moran D A J, Li X. Enhancement-mode GaAs MOSFETs with an In0.3Ga0.7As channel, a mobility of over 5000 cm2/(V· s), and transconductance of over 475μ S/μ m[J]. IEEE Electron Device Lett, 2007, 28(12): 1080. doi: 10.1109/LED.2007.910009 |
[2] |
Lee M L, Fitzgerald E A, Bulsara M T. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors[J]. J Appl Phys, 2005, 97(1): 011101. doi: 10.1063/1.1819976 |
[3] |
Takagi S, Tezuka T, Irisawa T. Device structures and carrier transport properties of advanced CMOS using high mobility channels[J]. Solid-State Electron, 2007, 51(4): 526. doi: 10.1016/j.sse.2007.02.017 |
[4] |
Cui W, Tang Z H, Tan K Z. A strained Si-channel NMOSFET with low field mobility enhancement of about 140% using a SiGe virtual substrate[J]. Journal of Semiconductors, 2012, 33(9): 094005. doi: 10.1088/1674-4926/33/9/094005 |
[5] |
Chaudhry A, Roy J N, Garima J. Nanoscale strained-Si MOSFET physics and modeling approaches: a review[J]. Journal of Semiconductors, 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001 |
[6] |
Von Haartman M, Malm B G, Ostling M. Comprehensive study on low-frequency noise and mobility in Si and SiGe PMOSFETS with high-k gate dielectrics and TiN gate[J]. IEEE Trans Electron Devices, 2006, 53(4): 836. doi: 10.1109/TED.2006.870276 |
[7] |
Gomez L, Hashemi P, Hoyt J L. Enhanced hole transport in short-channel strained-SiGe p-MOSFETs[J]. IEEE Trans Electron Devices, 2009, 56(11): 2644. doi: 10.1109/TED.2009.2031043 |
[8] |
Loo R, Sorada H, Inoue A. Selective epitaxial Si/SiGe growth for VT shift adjustment in high-κ pMOS devices[J]. Semicond Sci Technol, 2007, 22(1): 110. doi: 10.1088/0268-1242/22/1/S26 |
[9] |
Fischetti M, Laux S. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys[J]. J Appl Phys, 1996, 80(4): 2234. doi: 10.1063/1.363052 |
[10] |
Cassé M, Hutin L, Le Royer C. Experimental investigation of hole transport in strained Si1-xGex/SOI pMOSFETs-Part I: scattering mechanisms in long-channel devices[J]. IEEE Trans Electron Devices, 2012, 59(2): 316. doi: 10.1109/TED.2011.2175735 |
[11] |
Yu W, Wu W R, Zhang B. Experimental investigation on alloy scattering in sSi/Si0.5Ge0.5/sSOI quantum-well p-MOSFET[J]. IEEE Trans Electron Devices, 2014, 61(4): 950. doi: 10.1109/TED.2014.2304723 |
[12] |
Chattopadhyay S, Kwa K S K, Olsen S. C-V characterization of strained Si/SiGe multiple heterojunction capacitors as a tool for heterojunction MOSFET channel design[J]. Semicond Sci Technol, 2003, 18(8): 738. doi: 10.1088/0268-1242/18/8/304 |
[13] |
Garone P M, Venkataraman V, Sturm J C. Hole mobility enhancement in MOS-gated GexSi1-x/Si heterostructure inversion layers[J]. IEEE Electron Device Lett, 1992, 13(1): 56. doi: 10.1109/55.144950 |
[14] |
Weber O, Damlencourt J F, Andrieu F. Fabrication and mobility characteristics of SiGe surface channel p-MOSFETs with a HfO2/TiN gate stack[J]. IEEE Trans Electron Devices, 2006, 53(3): 449. doi: 10.1109/TED.2005.863536 |
[15] |
Song Y J, Lim J W, Kim S H. Effects of Si-cap layer thinning and Ge segregation on the characteristics of Si/SiGe/Si heterostructure p-MOSFETs[J]. Solid-State Electron, 2002, 46: 1983. doi: 10.1016/S0038-1101(02)00139-9 |
[16] |
Takagi S, Toriumi A, Iwase M. On the universality of inversion layer mobility in Si MOSFETs: Part Ⅱ-effect of surface orientation[J]. IEEE Trans Electron Devices, 1994, 41(12): 2363. doi: 10.1109/16.337450 |
[17] |
Takagi S, Toriumi A, Iwase M. On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration[J]. IEEE Trans Electron Devices, 1994, 41(12): 2357. doi: 10.1109/16.337449 |
[18] |
Kearney M J, Horrell A I. The effect of alloy scattering on the mobility of holes in a Si1-xGex quantum well[J]. Semicond Sci Technol, 1998, 13(2): 174. doi: 10.1088/0268-1242/13/2/003 |
[19] |
Höck G, Kohn E, Rosenblad C. High hole mobility in Si0.17Ge0.83 channel metal-oxide-semiconductor field-effect transistors grown by plasma-enhanced chemical vapor deposition.[J]. Appl Phys Lett, 2000, 76(26): 3920. doi: 10.1063/1.126821 |
[20] |
Andrieu F, Ernst T, Romanjek K. SiGe channel p-MOSFETs scaling-down[J]. Proceedings of European Solid-State Device Research Conference, 2003: 267. |
[1] |
Hill R J W, Moran D A J, Li X. Enhancement-mode GaAs MOSFETs with an In0.3Ga0.7As channel, a mobility of over 5000 cm2/(V· s), and transconductance of over 475μ S/μ m[J]. IEEE Electron Device Lett, 2007, 28(12): 1080. doi: 10.1109/LED.2007.910009 |
[2] |
Lee M L, Fitzgerald E A, Bulsara M T. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors[J]. J Appl Phys, 2005, 97(1): 011101. doi: 10.1063/1.1819976 |
[3] |
Takagi S, Tezuka T, Irisawa T. Device structures and carrier transport properties of advanced CMOS using high mobility channels[J]. Solid-State Electron, 2007, 51(4): 526. doi: 10.1016/j.sse.2007.02.017 |
[4] |
Cui W, Tang Z H, Tan K Z. A strained Si-channel NMOSFET with low field mobility enhancement of about 140% using a SiGe virtual substrate[J]. Journal of Semiconductors, 2012, 33(9): 094005. doi: 10.1088/1674-4926/33/9/094005 |
[5] |
Chaudhry A, Roy J N, Garima J. Nanoscale strained-Si MOSFET physics and modeling approaches: a review[J]. Journal of Semiconductors, 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001 |
[6] |
Von Haartman M, Malm B G, Ostling M. Comprehensive study on low-frequency noise and mobility in Si and SiGe PMOSFETS with high-k gate dielectrics and TiN gate[J]. IEEE Trans Electron Devices, 2006, 53(4): 836. doi: 10.1109/TED.2006.870276 |
[7] |
Gomez L, Hashemi P, Hoyt J L. Enhanced hole transport in short-channel strained-SiGe p-MOSFETs[J]. IEEE Trans Electron Devices, 2009, 56(11): 2644. doi: 10.1109/TED.2009.2031043 |
[8] |
Loo R, Sorada H, Inoue A. Selective epitaxial Si/SiGe growth for VT shift adjustment in high-κ pMOS devices[J]. Semicond Sci Technol, 2007, 22(1): 110. doi: 10.1088/0268-1242/22/1/S26 |
[9] |
Fischetti M, Laux S. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys[J]. J Appl Phys, 1996, 80(4): 2234. doi: 10.1063/1.363052 |
[10] |
Cassé M, Hutin L, Le Royer C. Experimental investigation of hole transport in strained Si1-xGex/SOI pMOSFETs-Part I: scattering mechanisms in long-channel devices[J]. IEEE Trans Electron Devices, 2012, 59(2): 316. doi: 10.1109/TED.2011.2175735 |
[11] |
Yu W, Wu W R, Zhang B. Experimental investigation on alloy scattering in sSi/Si0.5Ge0.5/sSOI quantum-well p-MOSFET[J]. IEEE Trans Electron Devices, 2014, 61(4): 950. doi: 10.1109/TED.2014.2304723 |
[12] |
Chattopadhyay S, Kwa K S K, Olsen S. C-V characterization of strained Si/SiGe multiple heterojunction capacitors as a tool for heterojunction MOSFET channel design[J]. Semicond Sci Technol, 2003, 18(8): 738. doi: 10.1088/0268-1242/18/8/304 |
[13] |
Garone P M, Venkataraman V, Sturm J C. Hole mobility enhancement in MOS-gated GexSi1-x/Si heterostructure inversion layers[J]. IEEE Electron Device Lett, 1992, 13(1): 56. doi: 10.1109/55.144950 |
[14] |
Weber O, Damlencourt J F, Andrieu F. Fabrication and mobility characteristics of SiGe surface channel p-MOSFETs with a HfO2/TiN gate stack[J]. IEEE Trans Electron Devices, 2006, 53(3): 449. doi: 10.1109/TED.2005.863536 |
[15] |
Song Y J, Lim J W, Kim S H. Effects of Si-cap layer thinning and Ge segregation on the characteristics of Si/SiGe/Si heterostructure p-MOSFETs[J]. Solid-State Electron, 2002, 46: 1983. doi: 10.1016/S0038-1101(02)00139-9 |
[16] |
Takagi S, Toriumi A, Iwase M. On the universality of inversion layer mobility in Si MOSFETs: Part Ⅱ-effect of surface orientation[J]. IEEE Trans Electron Devices, 1994, 41(12): 2363. doi: 10.1109/16.337450 |
[17] |
Takagi S, Toriumi A, Iwase M. On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration[J]. IEEE Trans Electron Devices, 1994, 41(12): 2357. doi: 10.1109/16.337449 |
[18] |
Kearney M J, Horrell A I. The effect of alloy scattering on the mobility of holes in a Si1-xGex quantum well[J]. Semicond Sci Technol, 1998, 13(2): 174. doi: 10.1088/0268-1242/13/2/003 |
[19] |
Höck G, Kohn E, Rosenblad C. High hole mobility in Si0.17Ge0.83 channel metal-oxide-semiconductor field-effect transistors grown by plasma-enhanced chemical vapor deposition.[J]. Appl Phys Lett, 2000, 76(26): 3920. doi: 10.1063/1.126821 |
[20] |
Andrieu F, Ernst T, Romanjek K. SiGe channel p-MOSFETs scaling-down[J]. Proceedings of European Solid-State Device Research Conference, 2003: 267. |
J Wen, Q Liu, C Liu, Y Z Wang, B Zhang, Z Y Xue, Z F Di, W J Yu, Q T Zhao. Investigation of Coulomb scattering on sSi/Si0.5Ge0.5/sSOI quantum-well p-MOSFETs[J]. J. Semicond., 2016, 37(9): 094002. doi: 10.1088/1674-4926/37/9/094002.
Article views: 1862 Times PDF downloads: 13 Times Cited by: 0 Times
Manuscript received: 16 February 2016 Manuscript revised: 21 March 2016 Online: Published: 01 September 2016
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2