J. Semicond. > Volume 38 > Issue 1 > Article Number: 011004

Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications

Xinzhe Min , , Pengchen Zhu , Shuai Gu and Jia Zhu

+ Author Affilications + Find other works by these authors

PDF

Abstract: The lead halide-based perovskites, for instance, CH3NH3PbX3 and CsPbX3 (X=Cl, Br, I), have received a lot of attention. Compared with bulk materials, low-dimensional perovskites have demonstrated a range of unique optical, electrical and mechanical properties, which enable wide applications in solar cells, lasers and other optoelectronic devices. In this paper, we provide a summary of the research progress of the low-dimensional perovskites in recent years, from synthesis methods, basic properties to their optoelectronic applications.

Key words: low-dimensional perovskitesnanoplatesnanowiresquantum dotssolar cellssemiconductor lasers

Abstract: The lead halide-based perovskites, for instance, CH3NH3PbX3 and CsPbX3 (X=Cl, Br, I), have received a lot of attention. Compared with bulk materials, low-dimensional perovskites have demonstrated a range of unique optical, electrical and mechanical properties, which enable wide applications in solar cells, lasers and other optoelectronic devices. In this paper, we provide a summary of the research progress of the low-dimensional perovskites in recent years, from synthesis methods, basic properties to their optoelectronic applications.

Key words: low-dimensional perovskitesnanoplatesnanowiresquantum dotssolar cellssemiconductor lasers



References:

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

[3]

Dang Y Y, Ju D X, Wang L. Recent progress in the synthesis of hybrid halide perovskite single crystals[J]. Cryst Eng Comm, 2016, 18: 4476. doi: 10.1039/C6CE00655H

[4]

Leyden M R, Jiang Y, Qi Y B. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability[J]. Sci Technol Adv Mater, 2015, 16: 036004. doi: 10.1088/1468-6996/16/3/036004

[5]

Cui J, Yuan H L, Li J P. Recent progress in efficient hybrid lead halide perovskite solar cells[J]. Sci Technol Adv Mater, 2015, 16(3): 036004. doi: 10.1088/1468-6996/16/3/036004

[6]

Yao X, Ding Y L, Zhang X D. A review of the perovskite solar cells[J]. Acta Phys Sin, 2015, 64(3): 038805.

[7]

Zhu P C, Gu S, Zhu J. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices[J]. Nano Lett, 2016, 16(2): 871. doi: 10.1021/acs.nanolett.5b03504

[8]

Eatona S W, Lai M L, Gibson N A. Lasing in robust cesium lead halide perovskite nanowires[J]. PNAS, 2016, 113(8): 1993. doi: 10.1073/pnas.1600789113

[9]

Zhu H M, Fu Y P, Meng F. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nat Mater, 2015, 14(6): 636. doi: 10.1038/nmat4271

[10]

Fu Y P Zhu H M Schrader A W. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. ACS Nano Lett, 2016, 16(2): 1000. doi: 10.1021/acs.nanolett.5b04053

[11]

Fu Y P, Meng F, Rowley M B. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications[J]. J Am Chem Soc, 2015, 137(17): 5810. doi: 10.1021/jacs.5b02651

[12]

Huang H L, Zhao F C, Liu L G. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots:an alternative route toward efficient light-emitting diodes[J]. ACS Appl Mater Interfaces, 2015, 7(51): 28128. doi: 10.1021/acsami.5b10373

[13]

Protesescu L, Yakunin S, Bodnarchuk M I. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15: 3692. doi: 10.1021/nl5048779

[14]

Mali S S, Shim C S, Hong C K. Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3/perovskite quantum dots[J]. NPG Asia Materials, 2015, 7: e208. doi: 10.1038/am.2015.86

[15]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscal, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[16]

Huang H, Susha A S, Kershaw S V. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature[J]. Adv Sci, 2015, 2(9): 1500194. doi: 10.1002/advs.201500194

[17]

Sichert J A, Tong Y, Mutz N. Quantum size effect in organometal halide perovskite nanoplatelets[J]. Nano Lett, 2015, 15(10): 6521. doi: 10.1021/acs.nanolett.5b02985

[18]

Deng H, Yang X K, Song H S. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability[J]. Aacs Nano Lett, 2015, 15(12): 7963. doi: 10.1021/acs.nanolett.5b03061

[19]

Song J Z, Xu L M, Zeng H B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Adv Mater, 2016, 28: 4861. doi: 10.1002/adma.v28.24

[20]

Geim A K, Macdonald A H. Graphene:Exploring carbon flatland[J]. Physics Today, 2007, 23(8): 35.

[21]

Niu W, Eiden A, Prakash G V. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors[J]. Appl Phys Lett, 2014, 104: 171111. doi: 10.1063/1.4874846

[22]

Ha S T, Liu X F, Xiong Q H. Synthesis of organic-inorganic lead halide perovskitenanoplatelets:towards high-performance perovskite solar cells[J]. Adv Opt Mater, 2014, 2: 838. doi: 10.1002/adom.201400106

[23]

Dou L T, Wong A B, Yu Y. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 2015, 349(6255): 1514. doi: 10.1126/science.aaa8515

[24]

Liu J Y, Xue Y Z, Wang Z Y. Two-dimensional CH3NH3PbI3 perovskite:synthesis and optoelectronic application[J]. ACS Nano, 2016, 10: 3536. doi: 10.1021/acsnano.5b07791

[25]

Tao A, Kim F, Hess C. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy[J]. Nano Lett, 2003, 3: 1229. doi: 10.1021/nl0344209

[26]

Yang P. Nanotechnology:wires on water[J]. Nature, 2003, 425: 243. doi: 10.1038/425243a

[27]

Deng H, Dong D D, Qiao K K. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices[J]. Nanoscale, 2015, 7: 4163. doi: 10.1039/C4NR06982J

[28]

Im J H, Luo J S, Franckevicius M. Nanowire perovskite solar cell[J]. Nano Lett, 2015, 15(3): 2120. doi: 10.1021/acs.nanolett.5b00046

[29]

Zhang D D, Eaton S W, Dou L T. Solution-phase synthesis of cesium lead halide perovskite nanowires[J]. J Am Chem Soc, 2015, 137(29): 9230. doi: 10.1021/jacs.5b05404

[30]

Reed M. Quantum dots[J]. Sci Am, 1993, 268(1): 118. doi: 10.1038/scientificamerican0193-118

[31]

Kojima A, Ikegami M, Teshima K. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J]. J Chem Lett, 2012, 41(4): 97.

[32]

Schmidt L C, Pertegas A, Gonzalez-Carre-Ro S. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. J Am Chem Soc, 2014, 136(3): 850. doi: 10.1021/ja4109209

[33]

Zhang F, Zhong H, Chen C. Brightly luminescent and colortunable colloidal CH3NH3PbX3(X=Br, I, Cl) quantum dots:potential alternatives for display technology[J]. J ACS Nano, 2015, 9(4): 4533. doi: 10.1021/acsnano.5b01154

[34]

Huang H, Susha A S, Kershaw S V. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature[J]. J Adv Sci, 2015, 2(9): 1500194. doi: 10.1002/advs.201500194

[35]

Song J Z, Li J H, Li X M. quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv Mater, 2015, 27: 7162. doi: 10.1002/adma.201502567

[36]

Carmona, Malinkiewicz, Soriano. Flexible high efficiency perovskite solar cells[J]. Energy Environ Sci, 2014, 7(7): 994.

[37]

Eperon, Burlakov, Snaith. Neutral color semitransparent microstructured perovskite solar cells[J]. ACS Nano, 2014, 8(1): 591. doi: 10.1021/nn4052309

[38]

Snaith H J. Perovskites:the emergence of a new era for low-cost, high-efficiency solar cells[J]. J Phys Chem Lett, 2013, 4(21): 3623. doi: 10.1021/jz4020162

[39]

Gratzel M, Park N G. Organometal halide perovskite photovoltaics:a diamond in the rough[J]. Nano Brief Rep Rev, 2014, 09(5): 56.

[40]

Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew Chem Int Ed, 2014, 53: 11232. doi: 10.1002/anie.201406466

[41]

Park B W, Philippe B, Zhang W L. Bismuth based hybrid perovskites A3Bi2I9(A:methylammonium or cesium) for solar cell application[J]. Adv Mater, 2015, 27: 6806. doi: 10.1002/adma.201501978

[42]

Cao D H, Stoumpos C C, Farha O K. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Am Chem Soc, 2015, 137: 7843. doi: 10.1021/jacs.5b03796

[43]

Xing J, Liu X F, Zhang Q. Vapor phase synthesis of organometal halide perovskite nanowires for tunable roomtemperature nanolasers[J]. Nano Lett, 2015, 15: 4571. doi: 10.1021/acs.nanolett.5b01166

[44]

Zhu F, Men L, Guo Y J. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals[J]. ACS Nano, 2015, 9(3): 2948. doi: 10.1021/nn507020s

[45]

Huang M H, Mao S, Feick H. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292: 1897. doi: 10.1126/science.1060367

[46]

Eaton S W, Lai M L, Gibson N A. Lasing in robust cesium lead halide perovskite nanowires[J]. PNAS, 2016, 113: 1993. doi: 10.1073/pnas.1600789113

[47]

Chen S T, Roh K Lee J. A photonic crystal laser from solution based organo-lead iodide perovskite thin films[J]. ACS Nano, 2016, 10: 3959. doi: 10.1021/acsnano.5b08153

[48]

Tan Z K, Moghaddam S, Lai M L. Bright light-emitting diodes based on organometal halideperovskite[J]. Nat Nanotechnol, 2014, 9(9): 687. doi: 10.1038/nnano.2014.149

[49]

Cho H, Jeong S H, Park M H. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 2015, 350(6265): 1222. doi: 10.1126/science.aad1818

[50]

Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370: 354. doi: 10.1038/370354a0

[51]

Gong X W, Yang Z Y, Walters G. Highly efficient quantum dot near-infrared light-emitting diodes[J]. Adv Mater, 2015, 27: 7162. doi: 10.1002/adma.201502567

[52]

Xing J, Yan F, Zhao Y W. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles[J]. ACS Nano, 2016, 10(7): 6623. doi: 10.1021/acsnano.6b01540

[53]

Yantara N, Bhaumik S, Yan F. Inorganic halide perovskites for efficient light-emitting diodes[J]. J Phys Chem Lett, 2015, 6(21): 4360. doi: 10.1021/acs.jpclett.5b02011

[54]

Ling Y C, Yuan Z, Tian Y. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets[J]. Adv Mater, 2016, 28: 305. doi: 10.1002/adma.201503954

[55]

Niu G, Li W, Meng F. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Mater Chem A, 2013, 2(3): 705.

[56]

Abate A, Saliba M, Snaith H J. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Lett, 2014, 14(6): 3247. doi: 10.1021/nl500627x

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

[3]

Dang Y Y, Ju D X, Wang L. Recent progress in the synthesis of hybrid halide perovskite single crystals[J]. Cryst Eng Comm, 2016, 18: 4476. doi: 10.1039/C6CE00655H

[4]

Leyden M R, Jiang Y, Qi Y B. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability[J]. Sci Technol Adv Mater, 2015, 16: 036004. doi: 10.1088/1468-6996/16/3/036004

[5]

Cui J, Yuan H L, Li J P. Recent progress in efficient hybrid lead halide perovskite solar cells[J]. Sci Technol Adv Mater, 2015, 16(3): 036004. doi: 10.1088/1468-6996/16/3/036004

[6]

Yao X, Ding Y L, Zhang X D. A review of the perovskite solar cells[J]. Acta Phys Sin, 2015, 64(3): 038805.

[7]

Zhu P C, Gu S, Zhu J. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices[J]. Nano Lett, 2016, 16(2): 871. doi: 10.1021/acs.nanolett.5b03504

[8]

Eatona S W, Lai M L, Gibson N A. Lasing in robust cesium lead halide perovskite nanowires[J]. PNAS, 2016, 113(8): 1993. doi: 10.1073/pnas.1600789113

[9]

Zhu H M, Fu Y P, Meng F. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nat Mater, 2015, 14(6): 636. doi: 10.1038/nmat4271

[10]

Fu Y P Zhu H M Schrader A W. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. ACS Nano Lett, 2016, 16(2): 1000. doi: 10.1021/acs.nanolett.5b04053

[11]

Fu Y P, Meng F, Rowley M B. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications[J]. J Am Chem Soc, 2015, 137(17): 5810. doi: 10.1021/jacs.5b02651

[12]

Huang H L, Zhao F C, Liu L G. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots:an alternative route toward efficient light-emitting diodes[J]. ACS Appl Mater Interfaces, 2015, 7(51): 28128. doi: 10.1021/acsami.5b10373

[13]

Protesescu L, Yakunin S, Bodnarchuk M I. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15: 3692. doi: 10.1021/nl5048779

[14]

Mali S S, Shim C S, Hong C K. Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3/perovskite quantum dots[J]. NPG Asia Materials, 2015, 7: e208. doi: 10.1038/am.2015.86

[15]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscal, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[16]

Huang H, Susha A S, Kershaw S V. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature[J]. Adv Sci, 2015, 2(9): 1500194. doi: 10.1002/advs.201500194

[17]

Sichert J A, Tong Y, Mutz N. Quantum size effect in organometal halide perovskite nanoplatelets[J]. Nano Lett, 2015, 15(10): 6521. doi: 10.1021/acs.nanolett.5b02985

[18]

Deng H, Yang X K, Song H S. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability[J]. Aacs Nano Lett, 2015, 15(12): 7963. doi: 10.1021/acs.nanolett.5b03061

[19]

Song J Z, Xu L M, Zeng H B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Adv Mater, 2016, 28: 4861. doi: 10.1002/adma.v28.24

[20]

Geim A K, Macdonald A H. Graphene:Exploring carbon flatland[J]. Physics Today, 2007, 23(8): 35.

[21]

Niu W, Eiden A, Prakash G V. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors[J]. Appl Phys Lett, 2014, 104: 171111. doi: 10.1063/1.4874846

[22]

Ha S T, Liu X F, Xiong Q H. Synthesis of organic-inorganic lead halide perovskitenanoplatelets:towards high-performance perovskite solar cells[J]. Adv Opt Mater, 2014, 2: 838. doi: 10.1002/adom.201400106

[23]

Dou L T, Wong A B, Yu Y. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 2015, 349(6255): 1514. doi: 10.1126/science.aaa8515

[24]

Liu J Y, Xue Y Z, Wang Z Y. Two-dimensional CH3NH3PbI3 perovskite:synthesis and optoelectronic application[J]. ACS Nano, 2016, 10: 3536. doi: 10.1021/acsnano.5b07791

[25]

Tao A, Kim F, Hess C. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy[J]. Nano Lett, 2003, 3: 1229. doi: 10.1021/nl0344209

[26]

Yang P. Nanotechnology:wires on water[J]. Nature, 2003, 425: 243. doi: 10.1038/425243a

[27]

Deng H, Dong D D, Qiao K K. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices[J]. Nanoscale, 2015, 7: 4163. doi: 10.1039/C4NR06982J

[28]

Im J H, Luo J S, Franckevicius M. Nanowire perovskite solar cell[J]. Nano Lett, 2015, 15(3): 2120. doi: 10.1021/acs.nanolett.5b00046

[29]

Zhang D D, Eaton S W, Dou L T. Solution-phase synthesis of cesium lead halide perovskite nanowires[J]. J Am Chem Soc, 2015, 137(29): 9230. doi: 10.1021/jacs.5b05404

[30]

Reed M. Quantum dots[J]. Sci Am, 1993, 268(1): 118. doi: 10.1038/scientificamerican0193-118

[31]

Kojima A, Ikegami M, Teshima K. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J]. J Chem Lett, 2012, 41(4): 97.

[32]

Schmidt L C, Pertegas A, Gonzalez-Carre-Ro S. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. J Am Chem Soc, 2014, 136(3): 850. doi: 10.1021/ja4109209

[33]

Zhang F, Zhong H, Chen C. Brightly luminescent and colortunable colloidal CH3NH3PbX3(X=Br, I, Cl) quantum dots:potential alternatives for display technology[J]. J ACS Nano, 2015, 9(4): 4533. doi: 10.1021/acsnano.5b01154

[34]

Huang H, Susha A S, Kershaw S V. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature[J]. J Adv Sci, 2015, 2(9): 1500194. doi: 10.1002/advs.201500194

[35]

Song J Z, Li J H, Li X M. quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv Mater, 2015, 27: 7162. doi: 10.1002/adma.201502567

[36]

Carmona, Malinkiewicz, Soriano. Flexible high efficiency perovskite solar cells[J]. Energy Environ Sci, 2014, 7(7): 994.

[37]

Eperon, Burlakov, Snaith. Neutral color semitransparent microstructured perovskite solar cells[J]. ACS Nano, 2014, 8(1): 591. doi: 10.1021/nn4052309

[38]

Snaith H J. Perovskites:the emergence of a new era for low-cost, high-efficiency solar cells[J]. J Phys Chem Lett, 2013, 4(21): 3623. doi: 10.1021/jz4020162

[39]

Gratzel M, Park N G. Organometal halide perovskite photovoltaics:a diamond in the rough[J]. Nano Brief Rep Rev, 2014, 09(5): 56.

[40]

Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew Chem Int Ed, 2014, 53: 11232. doi: 10.1002/anie.201406466

[41]

Park B W, Philippe B, Zhang W L. Bismuth based hybrid perovskites A3Bi2I9(A:methylammonium or cesium) for solar cell application[J]. Adv Mater, 2015, 27: 6806. doi: 10.1002/adma.201501978

[42]

Cao D H, Stoumpos C C, Farha O K. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Am Chem Soc, 2015, 137: 7843. doi: 10.1021/jacs.5b03796

[43]

Xing J, Liu X F, Zhang Q. Vapor phase synthesis of organometal halide perovskite nanowires for tunable roomtemperature nanolasers[J]. Nano Lett, 2015, 15: 4571. doi: 10.1021/acs.nanolett.5b01166

[44]

Zhu F, Men L, Guo Y J. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals[J]. ACS Nano, 2015, 9(3): 2948. doi: 10.1021/nn507020s

[45]

Huang M H, Mao S, Feick H. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292: 1897. doi: 10.1126/science.1060367

[46]

Eaton S W, Lai M L, Gibson N A. Lasing in robust cesium lead halide perovskite nanowires[J]. PNAS, 2016, 113: 1993. doi: 10.1073/pnas.1600789113

[47]

Chen S T, Roh K Lee J. A photonic crystal laser from solution based organo-lead iodide perovskite thin films[J]. ACS Nano, 2016, 10: 3959. doi: 10.1021/acsnano.5b08153

[48]

Tan Z K, Moghaddam S, Lai M L. Bright light-emitting diodes based on organometal halideperovskite[J]. Nat Nanotechnol, 2014, 9(9): 687. doi: 10.1038/nnano.2014.149

[49]

Cho H, Jeong S H, Park M H. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 2015, 350(6265): 1222. doi: 10.1126/science.aad1818

[50]

Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370: 354. doi: 10.1038/370354a0

[51]

Gong X W, Yang Z Y, Walters G. Highly efficient quantum dot near-infrared light-emitting diodes[J]. Adv Mater, 2015, 27: 7162. doi: 10.1002/adma.201502567

[52]

Xing J, Yan F, Zhao Y W. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles[J]. ACS Nano, 2016, 10(7): 6623. doi: 10.1021/acsnano.6b01540

[53]

Yantara N, Bhaumik S, Yan F. Inorganic halide perovskites for efficient light-emitting diodes[J]. J Phys Chem Lett, 2015, 6(21): 4360. doi: 10.1021/acs.jpclett.5b02011

[54]

Ling Y C, Yuan Z, Tian Y. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets[J]. Adv Mater, 2016, 28: 305. doi: 10.1002/adma.201503954

[55]

Niu G, Li W, Meng F. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Mater Chem A, 2013, 2(3): 705.

[56]

Abate A, Saliba M, Snaith H J. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Lett, 2014, 14(6): 3247. doi: 10.1021/nl500627x

[1]

S. Ananthakumar, J. Ram Kumar, S. Moorthy Babu. Colloidal synthesis and characterization of Cu2ZnSnS4 nanoplates. J. Semicond., 2017, 38(3): 033007. doi: 10.1088/1674-4926/38/3/033007

[2]

E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001

[3]

Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots. J. Semicond., 2019, 40(7): 071902. doi: 10.1088/1674-4926/40/7/071902

[4]

Abou El-Maaty M. Aly, A. Nasr. The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell. J. Semicond., 2015, 36(4): 042001. doi: 10.1088/1674-4926/36/4/042001

[5]

Chang Peng, Liu Su, Chen Rongbo, Tang Ying, Han Genliang. Low Temperature Synthesis and Optical Properties of ZnO Nanowires. J. Semicond., 2007, 28(10): 1503.

[6]

Zhitao Han, Sisi Li, Junjun Li, Jinkui Chu, Yong Chen. Facile synthesis of ZnO nanowires on FTO glass for dye-sensitized solar cells. J. Semicond., 2013, 34(7): 074002. doi: 10.1088/1674-4926/34/7/074002

[7]

A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

[8]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[9]

W. Nakwaski, R.P. Sarzała. Comprehensive and fully self-consistent modeling of modern semiconductor lasers. J. Semicond., 2016, 37(2): 024001. doi: 10.1088/1674-4926/37/2/024001

[10]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 000000.

[11]

Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901

[12]

Liang Song, Zhu Hongliang, Pan Jiaoqing, Wang Wei. . J. Semicond., 2005, 26(11): 2074.

[13]

Zhang Xing, Ning Yongqiang, Sun Yanfang, Zhang Yan, Liu Guangyu, Peng Hangyu, Li Zaijin, Qin Li, Liu Yun, Wang Lijun. Light-current characteristics of vertical-cavity surface-emitting lasers with external optical feedback. J. Semicond., 2010, 31(3): 034006. doi: 10.1088/1674-4926/31/3/034006

[14]

Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536.

[15]

Li Yuguo, Yang Aichun, Zhuo Boshi, Peng Ruiqin, Zheng Xuelei. Growth of SiO2 nanowires on different substrates using Au as a catalyst. J. Semicond., 2011, 32(2): 023002. doi: 10.1088/1674-4926/32/2/023002

[16]

B. Hamawandi, M. Noroozi, G. Jayakumar, A. Ergül, K. Zahmatkesh, M. S. Toprak, H. H. Radamson. Electrical properties of sub-100 nm SiGe nanowires. J. Semicond., 2016, 37(10): 102001. doi: 10.1088/1674-4926/37/10/102001

[17]

Zhang Guanjie, Xu Bo, Chen Yonghai, Yao Jianghong, Lin Yaowang, Shu Yongchun, Pi Biao, Xing Xiaodong, Liu Rubin, Shu Qiang, Wang Zhanguo, Xu Jingjun. Raman Scattering of InAs Quantum Dots with Different Deposition Thicknesses. J. Semicond., 2006, 27(6): 1012.

[18]

B. Shougaijam, R. Swain, C. Ngangbam, T.R. Lenka. Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique. J. Semicond., 2017, 38(5): 053001. doi: 10.1088/1674-4926/38/5/053001

[19]

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen. An InGaAs graded buffer layer in solar cells. J. Semicond., 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

[20]

Li Chen, Xinliang Chen, Yiming Liu, Ying Zhao, Xiaodan Zhang. Research on ZnO/Si heterojunction solar cells. J. Semicond., 2017, 38(5): 054005. doi: 10.1088/1674-4926/38/5/054005

Search

Advanced Search >>

GET CITATION

X Z Min, P C Zhu, S Gu, J Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications[J]. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004.

Export: BibTex EndNote

Article Metrics

Article views: 1635 Times PDF downloads: 32 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 09 October 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误