J. Semicond. > Volume 38 > Issue 1 > Article Number: 012001

First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects

Zhipeng Yuan , Hongbao Cui , and Xuefeng Guo

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C11-C12, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics.

Key words: B2-NiSc intermetallicsvacancyanti-position defectplasticityDebye temperature

Abstract: Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C11-C12, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics.

Key words: B2-NiSc intermetallicsvacancyanti-position defectplasticityDebye temperature



References:

[1]

Karl G, Alan R, Alexandra P. A family of ductile intermetallic compounds[J]. Nat Mater, 2003, 2(9): 587. doi: 10.1038/nmat958

[2]

Chen L, Peng P, Zhan J. First-principles calculation on mechanical properties of B2-NiAl intermetallic compound with Fe addition[J]. Rare Metal Mater Eng, 2010, 39(2): 229.

[3]

Xie Z Y, Farkas D. Atomistic structure and lattice effects of vacancies in Ni-Al intermetallics[J]. J Mater Res, 1994, 9(4): 875. doi: 10.1557/JMR.1994.0875

[4]

Fu C L, Ye Y, Yoo M H. Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl[J]. Phys Rev B, 1993, 48(9): 6712. doi: 10.1103/PhysRevB.48.6712

[5]

Payne M C, Teter M P, Allan D C. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4): 1045. doi: 10.1103/RevModPhys.64.1045

[6]

Sun G P, Yan J L, Niu P J. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy[J]. J Semicond, 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005

[7]

Ma X G, Yan J, Liu N. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface[J]. J Semicond, 2016, 37(3): 033001. doi: 10.1088/1674-4926/37/3/033001

[8]

Liu Z Y, Lin D L, Huang B Y. Calculation on concentration of point defects in NiAl Intermetallics. J Shanghai Jiaotong Univ 1999, 33: 146

[9]

Thomas R M, Ann E M. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo[J]. Phys Rev B, 2002, 66(21): 214110. doi: 10.1103/PhysRevB.66.214110

[10]

Pan Y, Lin Y, Wang H. Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles[J]. Mater Des, 2015, 86: 259.

[11]

Chen K Y, Zhao L R, John R. Alloying effects on elastic properties of TiN-based nitride[J]. J Phys D, 2003, 36(21): 2725. doi: 10.1088/0022-3727/36/21/021

[12]

Liu Q, Zhang R. Effect of 6.25 at% Al addition on structural stability of magnesium under high pressure: a first-principles study[J]. J Alloys Compd, 2010, 508(2): 616. doi: 10.1016/j.jallcom.2010.08.142

[13]

Pugh S F. XCII. Relations between the modulus of elasticity and the plastic properties of polycrystalline pure metals[J]. London Edinburgh Dublin Philos Mag J Sci, 2009, 45(367): 823.

[14]

Schiltz R J, Smith J F. Elastic constants of some MAl2 single crystals[J]. J Appl Phys, 1974, 45(11): 4681. doi: 10.1063/1.1663118

[15]

Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4: a class of hard materials[J]. Phys Rev B, 2003, 68(18): 184108. doi: 10.1103/PhysRevB.68.184108

[16]

Anderson O L. A simplified method for calculating the Debye temperature from elastic constants[J]. J Phys Chem Solids, 1963, 24(7): 909. doi: 10.1016/0022-3697(63)90067-2

[17]

Aydin S, Simsek M. First-principles calculations of MnB2, TcB2, and ReB2 within the ReB2-type structure[J]. Phys Rev B, 2009, 80(13): 134107. doi: 10.1103/PhysRevB.80.134107

[18]

Hong S, Fu C L. Phase stability and elastic modulus of Cr2Nb by first-principles calculations[J]. Intermetallics, 1999, 7(1): 5. doi: 10.1016/S0966-9795(98)00005-3

[1]

Karl G, Alan R, Alexandra P. A family of ductile intermetallic compounds[J]. Nat Mater, 2003, 2(9): 587. doi: 10.1038/nmat958

[2]

Chen L, Peng P, Zhan J. First-principles calculation on mechanical properties of B2-NiAl intermetallic compound with Fe addition[J]. Rare Metal Mater Eng, 2010, 39(2): 229.

[3]

Xie Z Y, Farkas D. Atomistic structure and lattice effects of vacancies in Ni-Al intermetallics[J]. J Mater Res, 1994, 9(4): 875. doi: 10.1557/JMR.1994.0875

[4]

Fu C L, Ye Y, Yoo M H. Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl[J]. Phys Rev B, 1993, 48(9): 6712. doi: 10.1103/PhysRevB.48.6712

[5]

Payne M C, Teter M P, Allan D C. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4): 1045. doi: 10.1103/RevModPhys.64.1045

[6]

Sun G P, Yan J L, Niu P J. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy[J]. J Semicond, 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005

[7]

Ma X G, Yan J, Liu N. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface[J]. J Semicond, 2016, 37(3): 033001. doi: 10.1088/1674-4926/37/3/033001

[8]

Liu Z Y, Lin D L, Huang B Y. Calculation on concentration of point defects in NiAl Intermetallics. J Shanghai Jiaotong Univ 1999, 33: 146

[9]

Thomas R M, Ann E M. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo[J]. Phys Rev B, 2002, 66(21): 214110. doi: 10.1103/PhysRevB.66.214110

[10]

Pan Y, Lin Y, Wang H. Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles[J]. Mater Des, 2015, 86: 259.

[11]

Chen K Y, Zhao L R, John R. Alloying effects on elastic properties of TiN-based nitride[J]. J Phys D, 2003, 36(21): 2725. doi: 10.1088/0022-3727/36/21/021

[12]

Liu Q, Zhang R. Effect of 6.25 at% Al addition on structural stability of magnesium under high pressure: a first-principles study[J]. J Alloys Compd, 2010, 508(2): 616. doi: 10.1016/j.jallcom.2010.08.142

[13]

Pugh S F. XCII. Relations between the modulus of elasticity and the plastic properties of polycrystalline pure metals[J]. London Edinburgh Dublin Philos Mag J Sci, 2009, 45(367): 823.

[14]

Schiltz R J, Smith J F. Elastic constants of some MAl2 single crystals[J]. J Appl Phys, 1974, 45(11): 4681. doi: 10.1063/1.1663118

[15]

Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4: a class of hard materials[J]. Phys Rev B, 2003, 68(18): 184108. doi: 10.1103/PhysRevB.68.184108

[16]

Anderson O L. A simplified method for calculating the Debye temperature from elastic constants[J]. J Phys Chem Solids, 1963, 24(7): 909. doi: 10.1016/0022-3697(63)90067-2

[17]

Aydin S, Simsek M. First-principles calculations of MnB2, TcB2, and ReB2 within the ReB2-type structure[J]. Phys Rev B, 2009, 80(13): 134107. doi: 10.1103/PhysRevB.80.134107

[18]

Hong S, Fu C L. Phase stability and elastic modulus of Cr2Nb by first-principles calculations[J]. Intermetallics, 1999, 7(1): 5. doi: 10.1016/S0966-9795(98)00005-3

[1]

Anna V. Krivosheeva, Victor L. Shaposhnikov, Victor E. Borisenko, Jean-Louis Lazzari, Chow Waileong, Julia Gusakova, Beng Kang Tay. Theoretical study of defect impact on two-dimensional MoS2. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002

[2]

Zhao Youwen, Lü Xiaohong, Dong Zhiyuan, Duan Manlong, Sun Wenrong. Influence of Vacancy and Interstitial on Material Property of Semi-Insulating lnP Single Crystal. J. Semicond., 2007, 28(S1): 175.

[3]

Jiang Hanqin, Ma Xiangyang, Yang Deren, Que Duanlin. Effect of Vacancy on Nucleation for Oxygen Precipitation in Conventional and Nitrogen-Doped Czochralski Silicon. J. Semicond., 2008, 29(10): 1984.

[4]

Guipeng Sun, Jinliang Yan, Peijiang Niu, Delan Meng. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J. Semicond., 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005

[5]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

[6]

Chen Hailong, Wang Lei, Ma Xiangyang, . Infrared Spectrum of Nitrogen-Vacancy Complexes in Nitrogen-Implanted Silicon. J. Semicond., 2006, 27(7): 1209.

[7]

Zhang Xingli, Sun Zhaowei. Effects of vacancy structural defects on the thermal conductivity of silicon thin films. J. Semicond., 2011, 32(5): 053002. doi: 10.1088/1674-4926/32/5/053002

[8]

Jiajuan Shi, Ya Lin, Tao Zeng, Zhongqiang Wang, Xiaoning Zhao, Haiyang Xu, Yichun Liu. Voltage-dependent plasticity and image Boolean operations realized in a WO x-based memristive synapse. J. Semicond., 2021, 42(1): 014102. doi: 10.1088/1674-4926/42/1/014102

[9]

Chenrong Gong, Lin Chen, Weihua Liu, Guohe Zhang. Study of short-term synaptic plasticity in Ion-Gel gated graphene electric-double-layer synaptic transistors. J. Semicond., 2021, 42(1): 014101. doi: 10.1088/1674-4926/42/1/014101

[10]

Peijiang Niu, Jinliang Yan, Delan Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004

[11]

Zhiguo Sun, Bo Cai, Xi Chen, Wenxian Wei, Xiaoming Li, Dandan Yang, Cuifang Meng, Ye Wu, Haibo Zeng. Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites. J. Semicond., 2020, 41(12): 122501. doi: 10.1088/1674-4926/41/12/122501

[12]

Fucheng Wan, Fuling Tang, Hongtao Xue, Wenjiang Lu, Yudong Feng, Zhiyuan Rui. Effects of defect states on the performance of CuInGaSe2 solar cells. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011

[13]

Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.

[14]

Li Cheng, Lai Hongkai, Chen Songyan. Influence of Annealing Temperature on Luminescence of β-FeSi2 Particles Embedded in Silicon. J. Semicond., 2006, 27(1): 82.

[15]

R. Singh, T. R. Lenka, R. T. Velpula, B. Jain, H. Q. T. Bui, H. P. T. Nguyen. Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT. J. Semicond., 2020, 41(10): 102802. doi: 10.1088/1674-4926/41/10/102802

[16]

Zhang Yu, Wang Yongbin, Xu Yingqiang, Xu Yun, Niu Zhichuan, Song Guofeng. High-temperature (T=80℃) operation of a 2 μm InGaSb-AlGaAsSb quantum well laser. J. Semicond., 2012, 33(4): 044006. doi: 10.1088/1674-4926/33/4/044006

[17]

Tao Chunmin, Tao Yaqi, Chen Cheng, Kong Yuechan, Chen Dunjun, Shen Bo, , Jiao Gang, Chen Tangsheng, Zhang Rong. High-Temperature Transport Properties of 2DEG in AlGaN/GaN Heterostructures. J. Semicond., 2006, 27(7): 1251.

[18]

T Namitha Asokan, K S Urmila, Rajani Jacob, Rachel Reena Philip, G S Okram, V Ganesan, B Pradeep. Optical and electrical properties and phonon drag effect in low temperature TEP measurements of AgSbSe2 thin films. J. Semicond., 2014, 35(5): 052001. doi: 10.1088/1674-4926/35/5/052001

[19]

Pengyi Yue, Xiuming Dou, Xiangbin Su, Zhichuan Niu, Baoquan Sun. Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip. J. Semicond., 2018, 39(8): 084003. doi: 10.1088/1674-4926/39/8/084003

[20]

Cao Jie, Qu Shengchun, Liu Kong, Wang Zhanguo. Effect of bath temperature on the properties of CuInxGa1–x Se2 thin films grown by the electrodeposition technique. J. Semicond., 2010, 31(8): 083003. doi: 10.1088/1674-4926/31/8/083003

Search

Advanced Search >>

GET CITATION

Z P Yuan, H B Cui, X F Guo. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects[J]. J. Semicond., 2017, 38(1): 012001. doi: 10.1088/1674-4926/38/1/012001.

Export: BibTex EndNote

Article Metrics

Article views: 1578 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 09 May 2016 Manuscript revised: 30 June 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误