J. Semicond. > Volume 38 > Issue 12 > Article Number: 124002

Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach

Manoj Kumar 1, , Yogesh Pratap 2, , Subhasis Haldar 3, , Mridula Gupta 1, and R. S. Gupta 4, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The ION/IOFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

Key words: ATLAS-3Dcylindrical gate all arounddual metal gateinsulated shallow extensionSchottky barrier

Abstract: In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The ION/IOFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

Key words: ATLAS-3Dcylindrical gate all arounddual metal gateinsulated shallow extensionSchottky barrier



References:

[1]

Ferain I, Coling C A, Colinge J P. Multigate transistor as the future of classical metal–oxide–semiconductor field-effect transistors[J]. Nature, 2011, 479: 310. doi: 10.1038/nature10676

[2]

Zhang Y, Li Z, Wang C. Compact analytical threshold voltage model of strained gate-all around MOSFET fabricated on Si1−xGex virtual substrate[J]. IEICE Trans Electron, 2016, E99-C: 302. doi: 10.1587/transele.E99.C.302

[3]

Cheng Q, Hong C, Kuo J B. A surface-field-based model for nanowire MOSFETs with spatial variations of doping profiles[J]. IEEE Trans Electron Devices, 2014, 61: 4040. doi: 10.1109/TED.2014.2364781

[4]

Cheng H, Uno S, Nakazato K. Analytical compact model of ballistic and quasi-ballistic transport for cylindrical gat-all-around MOSFET including drain-induced barrier lowering effect[J]. J Comput Electron, 2014, 14: 321.

[5]

Larson J M, Snyder J P. Overview and status of metal S/D Schottky-barrier MOSFET technology[J]. IEEE Trans Electron Devices, 2006, 53: 1048. doi: 10.1109/TED.2006.871842

[6]

Thompson S, Parthasarathy S. Mooer's Law: the future of Si microelectronics[J]. Mater Today, 2006, 9: 20.

[7]

Kedzierski J, Xuan P, Andeson E H. Complementary silicide source/drain thin-body MOSFT for the 20 nm gate length regime[J]. IEEE International Electron Devices Meeting (IEDM), 2000: 57.

[8]

Martin-Martinez M J, Couso C, Pascual E. Monte Carlo study of dopant-segregated Schottky Barrier DoI MOSFETs: enhancement of the RF performance[J]. IEEE Trans Electron Devices, 2014, 61: 3955. doi: 10.1109/TED.2014.2360468

[9]

Zhu G, Zhou X, Lee T S. A compact model for undoped silicon-nanowire MOSFETs with schottky-barrier source/drain[J]. IEEE Trans Electron Devices, 2009, 56: 1100. doi: 10.1109/TED.2009.2015161

[10]

Choi S J, Cho Y K. Source and drain junction engineering for enhanced non-volatile memory performance. Igor Stievano ed. Flash Memories, InTech, 2011

[11]

Kumar M, Haldar S, Gupta M. Physics based analytical model for surface potential and subthreshold current of cylindrical Schottky barrier gate all around MOSFET with high-k gate stack[J]. Superlattices Microstruct, 2016, 90: 215. doi: 10.1016/j.spmi.2015.12.029

[12]

Östling M, Gudmundsson V, Hellström P E. Towards Schottky-barrier source/drain MOSFETs[J]. 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), 2008: 146.

[13]

Saad I, Bolong N, Divya P, et al. Performance design and simulation analysis of vertical double gate MOSFET (VDGM). UKSim 13th International Conference on Modelling and Simulation, 2011

[14]

Trivedi N, Kumar M, Haldar S, et al. Aanalytical modelling of junctionless accumulation mode cylindrical surrounding gate MOSFET (JAM CSG). Int J Numerical Model,

[15]

Jurczak M, Skotnicki T, Gwoziecki R. Dielectric pockets-a new concept of the junctions for deca-nanometric CMOS devices[J]. IEEE Trans Electron Devices, 2001, 48: 952.

[16]

Kok O P, Ibrahim K. Simulation of two-dimensional 50 nm vertical metal oxide semiconductor field effect transistor incorporating a dielectric pocket[J]. Jpn J Appl Phys, 2009, 48: 111201. doi: 10.1143/JJAP.48.111201

[17]

Ghoneim H, Konch J, Riel H. Interface engineering for the suppression of ambipolar behavior in Schottky-barrier MOSFET[J]. 10th International Conference on Ultimate Integration of Silicon, 2009: 69.

[18]

Ghoneim H, Knoch J, Riel H. Suppression of ambipolar behaviour in metallic source/drain metal oxide-semiconductor field-effect transistors[J]. Appl Phys Lett, 2009, 95: 213504. doi: 10.1063/1.3266526

[19]

Kumari V, Saxena M, Gupta R S. Two dimensional analytical drain current model for double gate MOSFET incorporating dielectric pocket[J]. IEEE Trans Electron Devices, 2012, 59: 2567. doi: 10.1109/TED.2012.2206030

[20]

Singh B, Gola D, Goel E. Dielectric pocket double gate junctionless FET: a new MOS structure with improved subthreshold characteristics for low power VLSI applications[J]. J Comput Electron, 2016, 15: 502. doi: 10.1007/s10825-016-0808-3

[21]

Wang H, Wang Z. Dielectric plug in MOSFETs to suppress short-channel effects. US Patent 7154146 B2, 2006

[22]

Kumari V, Saxena M, Gupta R S. Temperature dependent drain current model for gate stack insulated shallow extension silicon on nothing (ISESON) MOSFET for wide operating temperature range[J]. Microelectron Reliab, 2012, 52: 974. doi: 10.1016/j.microrel.2011.12.021

[23]

Lin R, Lu Q, Ranade P. An adjustable workfunction technology using Mo gate for CMOS devices[J]. IEEE Electron Devices Lett, 2002, 23: 49. doi: 10.1109/55.974809

[24]

Lu Q, Yeo Y C, Ranade P H. Dual-metal gate technology for deep-submicron CMOS transistors[J]. Symp VLSI Technol, 2000: 72.

[25]

Tsui B Y, Huang S F. Wide range workfunction modulation of binary alloy for MOSFET application[J]. IEEE Electron Device Lett, 2003, 24: 153. doi: 10.1109/LED.2003.809528

[26]

Schwarz M, Kloes A. Analysis and performance study of III–V Schottky barrier double-gate MOSFET using a 2-D analytical model[J]. IEEE Trans Electron Devices, 2016, 63: 2757. doi: 10.1109/TED.2016.2569488

[27]

Trivedi V P, Fossum J G. Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs[J]. IEEE Electron Device Lett, 2005, 26: 579. doi: 10.1109/LED.2005.852741

[28]

Omura Y, Horiguchi S, Tabe M. Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs[J]. IEEE Electron Device Lett, 1993, 14: 569. doi: 10.1109/55.260792

[29]

ATLAS User's Manual. 3-D Device Simulator, Silvaco Inc, Santa Clara, CA, USA, 2012.

[30]

Dutta A, Koley K, Saha S K. Analysis of harmonic distortion in UDG-MOSFETs[J]. IEEE Trans. Electron Devices, 2014, 61: 998. doi: 10.1109/TED.2014.2306971

[31]

Gautam R, Saxena M, Gupta R S. Effect of localized charges on nanoscale cylindrical surrounding gate MOSFET: analog performance and linearity analysis[J]. Microelectron Reliab, 2012, 52: 989. doi: 10.1016/j.microrel.2011.12.014

[1]

Ferain I, Coling C A, Colinge J P. Multigate transistor as the future of classical metal–oxide–semiconductor field-effect transistors[J]. Nature, 2011, 479: 310. doi: 10.1038/nature10676

[2]

Zhang Y, Li Z, Wang C. Compact analytical threshold voltage model of strained gate-all around MOSFET fabricated on Si1−xGex virtual substrate[J]. IEICE Trans Electron, 2016, E99-C: 302. doi: 10.1587/transele.E99.C.302

[3]

Cheng Q, Hong C, Kuo J B. A surface-field-based model for nanowire MOSFETs with spatial variations of doping profiles[J]. IEEE Trans Electron Devices, 2014, 61: 4040. doi: 10.1109/TED.2014.2364781

[4]

Cheng H, Uno S, Nakazato K. Analytical compact model of ballistic and quasi-ballistic transport for cylindrical gat-all-around MOSFET including drain-induced barrier lowering effect[J]. J Comput Electron, 2014, 14: 321.

[5]

Larson J M, Snyder J P. Overview and status of metal S/D Schottky-barrier MOSFET technology[J]. IEEE Trans Electron Devices, 2006, 53: 1048. doi: 10.1109/TED.2006.871842

[6]

Thompson S, Parthasarathy S. Mooer's Law: the future of Si microelectronics[J]. Mater Today, 2006, 9: 20.

[7]

Kedzierski J, Xuan P, Andeson E H. Complementary silicide source/drain thin-body MOSFT for the 20 nm gate length regime[J]. IEEE International Electron Devices Meeting (IEDM), 2000: 57.

[8]

Martin-Martinez M J, Couso C, Pascual E. Monte Carlo study of dopant-segregated Schottky Barrier DoI MOSFETs: enhancement of the RF performance[J]. IEEE Trans Electron Devices, 2014, 61: 3955. doi: 10.1109/TED.2014.2360468

[9]

Zhu G, Zhou X, Lee T S. A compact model for undoped silicon-nanowire MOSFETs with schottky-barrier source/drain[J]. IEEE Trans Electron Devices, 2009, 56: 1100. doi: 10.1109/TED.2009.2015161

[10]

Choi S J, Cho Y K. Source and drain junction engineering for enhanced non-volatile memory performance. Igor Stievano ed. Flash Memories, InTech, 2011

[11]

Kumar M, Haldar S, Gupta M. Physics based analytical model for surface potential and subthreshold current of cylindrical Schottky barrier gate all around MOSFET with high-k gate stack[J]. Superlattices Microstruct, 2016, 90: 215. doi: 10.1016/j.spmi.2015.12.029

[12]

Östling M, Gudmundsson V, Hellström P E. Towards Schottky-barrier source/drain MOSFETs[J]. 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), 2008: 146.

[13]

Saad I, Bolong N, Divya P, et al. Performance design and simulation analysis of vertical double gate MOSFET (VDGM). UKSim 13th International Conference on Modelling and Simulation, 2011

[14]

Trivedi N, Kumar M, Haldar S, et al. Aanalytical modelling of junctionless accumulation mode cylindrical surrounding gate MOSFET (JAM CSG). Int J Numerical Model,

[15]

Jurczak M, Skotnicki T, Gwoziecki R. Dielectric pockets-a new concept of the junctions for deca-nanometric CMOS devices[J]. IEEE Trans Electron Devices, 2001, 48: 952.

[16]

Kok O P, Ibrahim K. Simulation of two-dimensional 50 nm vertical metal oxide semiconductor field effect transistor incorporating a dielectric pocket[J]. Jpn J Appl Phys, 2009, 48: 111201. doi: 10.1143/JJAP.48.111201

[17]

Ghoneim H, Konch J, Riel H. Interface engineering for the suppression of ambipolar behavior in Schottky-barrier MOSFET[J]. 10th International Conference on Ultimate Integration of Silicon, 2009: 69.

[18]

Ghoneim H, Knoch J, Riel H. Suppression of ambipolar behaviour in metallic source/drain metal oxide-semiconductor field-effect transistors[J]. Appl Phys Lett, 2009, 95: 213504. doi: 10.1063/1.3266526

[19]

Kumari V, Saxena M, Gupta R S. Two dimensional analytical drain current model for double gate MOSFET incorporating dielectric pocket[J]. IEEE Trans Electron Devices, 2012, 59: 2567. doi: 10.1109/TED.2012.2206030

[20]

Singh B, Gola D, Goel E. Dielectric pocket double gate junctionless FET: a new MOS structure with improved subthreshold characteristics for low power VLSI applications[J]. J Comput Electron, 2016, 15: 502. doi: 10.1007/s10825-016-0808-3

[21]

Wang H, Wang Z. Dielectric plug in MOSFETs to suppress short-channel effects. US Patent 7154146 B2, 2006

[22]

Kumari V, Saxena M, Gupta R S. Temperature dependent drain current model for gate stack insulated shallow extension silicon on nothing (ISESON) MOSFET for wide operating temperature range[J]. Microelectron Reliab, 2012, 52: 974. doi: 10.1016/j.microrel.2011.12.021

[23]

Lin R, Lu Q, Ranade P. An adjustable workfunction technology using Mo gate for CMOS devices[J]. IEEE Electron Devices Lett, 2002, 23: 49. doi: 10.1109/55.974809

[24]

Lu Q, Yeo Y C, Ranade P H. Dual-metal gate technology for deep-submicron CMOS transistors[J]. Symp VLSI Technol, 2000: 72.

[25]

Tsui B Y, Huang S F. Wide range workfunction modulation of binary alloy for MOSFET application[J]. IEEE Electron Device Lett, 2003, 24: 153. doi: 10.1109/LED.2003.809528

[26]

Schwarz M, Kloes A. Analysis and performance study of III–V Schottky barrier double-gate MOSFET using a 2-D analytical model[J]. IEEE Trans Electron Devices, 2016, 63: 2757. doi: 10.1109/TED.2016.2569488

[27]

Trivedi V P, Fossum J G. Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs[J]. IEEE Electron Device Lett, 2005, 26: 579. doi: 10.1109/LED.2005.852741

[28]

Omura Y, Horiguchi S, Tabe M. Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs[J]. IEEE Electron Device Lett, 1993, 14: 569. doi: 10.1109/55.260792

[29]

ATLAS User's Manual. 3-D Device Simulator, Silvaco Inc, Santa Clara, CA, USA, 2012.

[30]

Dutta A, Koley K, Saha S K. Analysis of harmonic distortion in UDG-MOSFETs[J]. IEEE Trans. Electron Devices, 2014, 61: 998. doi: 10.1109/TED.2014.2306971

[31]

Gautam R, Saxena M, Gupta R S. Effect of localized charges on nanoscale cylindrical surrounding gate MOSFET: analog performance and linearity analysis[J]. Microelectron Reliab, 2012, 52: 989. doi: 10.1016/j.microrel.2011.12.014

Search

Advanced Search >>

GET CITATION

M Kumar, Y Pratap, S Haldar, M Gupta, R. S. Gupta. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach[J]. J. Semicond., 2017, 38(12): 124002. doi: 10.1088/1674-4926/38/12/124002.

Export: BibTex EndNote

Article Metrics

Article views: 1778 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 10 February 2017 Manuscript revised: 17 April 2017 Online: Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误