J. Semicond. > Volume 38 > Issue 3 > Article Number: 033001

Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2

Jimin Shang , , Le Huang and Zhongming Wei

+ Author Affilications + Find other works by these authors

PDF

Abstract: Using first-principles calculations, including Grimme D2 method for van der Waals interactions, we investigate the tuning electronic properties of bilayer zirconium disulfides (ZrS2) subjected to vertical electric field and normal compressive strain. The band gap of ZrS2 bilayer can be flexibly tuned by vertical external electric field. Due to the Stark effect, at critical electric fields about 1.4 V/Å, semiconducting-metallic transition presents. In addition, our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS2 bilayer sheet. The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics.

Key words: vertical electric fieldnormal compressive strainelectronic propertieszirconium disulfides bilayer

Abstract: Using first-principles calculations, including Grimme D2 method for van der Waals interactions, we investigate the tuning electronic properties of bilayer zirconium disulfides (ZrS2) subjected to vertical electric field and normal compressive strain. The band gap of ZrS2 bilayer can be flexibly tuned by vertical external electric field. Due to the Stark effect, at critical electric fields about 1.4 V/Å, semiconducting-metallic transition presents. In addition, our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS2 bilayer sheet. The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics.

Key words: vertical electric fieldnormal compressive strainelectronic propertieszirconium disulfides bilayer



References:

[1]

Li Y, Tongay S, Yue Q. Metal to semiconductor transition in metallic transition metal dichalcogenides[J]. J Appl Phys, 2013, 114(17): 174307. doi: 10.1063/1.4829464

[2]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(24): 136805.

[3]

Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271. doi: 10.1021/nl903868w

[4]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193

[5]

Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83(24): 245213. doi: 10.1103/PhysRevB.83.245213

[6]

Li Y, Yang S, Li J. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field[J]. J Phys Chem C, 2014, 118(41): 23970. doi: 10.1021/jp506881v

[7]

Kumar A, Ahluwalia P K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2(X D S, Se, Te)[J]. Physica B, 2013, 419: 66. doi: 10.1016/j.physb.2013.03.029

[8]

Zeng Z, Yin Z, Huang X. Single-layer semiconducting nanosheets:high-yield preparation and device fabrication[J]. Angewandte Chemie Int Ed, 2011, 50(47): 11093. doi: 10.1002/anie.v50.47

[9]

Li L, Fang X, Zhai T. Electrical transport and highperformance photoconductivity in individual ZrS2 nanobelts[J]. Adv Maters, 2010, 22(37): 4151. doi: 10.1002/adma.v22:37

[10]

Li L, Wang H, Fang X. High-performance Schottky solar cells using ZrS2 nanobelt networks[J]. Energy Environ Sci, 2011, 4(7): 2586. doi: 10.1039/c1ee01286j

[11]

Li Y, Kang J, Li J. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain:first-principles calculations[J]. RSC Adv, 2014, 4(15): 7396. doi: 10.1039/c3ra46090h

[12]

Yu E K, Stewart D A, Tiwari S. Ab initio study of polarizability and induced charge densities in multilayer graphene films[J]. Phys Rev B, 2008, 77(19): 195406. doi: 10.1103/PhysRevB.77.195406

[13]

McCann E. Asymmetry gap in the electronic band structure of bilayer graphene[J]. Phys Rev B, 2006, 74(16): 161403. doi: 10.1103/PhysRevB.74.161403

[14]

Liu Q, Li L, Li Y. Tuning electronic structure of bilayer MoS2 by vertical electric field:a first-principles investigation[J]. J Phys Chem C, 2012, 116(40): 21556. doi: 10.1021/jp307124d

[15]

Qi J, Li X, Qian X. Bandgap engineering of rippled MoS2 monolayer under external electric field[J]. Appl Phys Lett, 2013, 102(17): 173112. doi: 10.1063/1.4803803

[16]

Manjanath A, Samanta A, Pandey T. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain[J]. Nanotechnology, 2015, 26(7): 075701. doi: 10.1088/0957-4484/26/7/075701

[17]

Huang L, Li Y, Wei Z. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure[J]. Sci Rep, 2015, 5: 16448. doi: 10.1038/srep16448

[18]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater, 1996, 6(1): 15. doi: 10.1016/0927-0256(96)00008-0

[19]

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787. doi: 10.1002/(ISSN)1096-987X

[20]

Zywietz T, Neugebauer J, Scheffler M. Adatom diffusion at GaN (0001) and (0001) surfaces[J]. Appl Phys Lett, 1998, 73(4): 487. doi: 10.1063/1.121909

[21]

Ramasubramaniam A, Naveh D, Towe E. Tunable band gaps in bilayer transition-metal dichalcogenides[J]. Phys Rev B, 2011, 84(20): 205325. doi: 10.1103/PhysRevB.84.205325

[22]

Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9(3): 149. doi: 10.1038/nphys2524

[23]

Jiang H. Structural and electronic properties of ZrX2 and HfX2(X D S and Se) from first principles calculations[J]. J Chem Phys, 2011, 134(20): 204705. doi: 10.1063/1.3594205

[24]

Greenaway D L, Nitsche R. Preparation and optical properties of group IV-VI2 chalcogenides having the CdI2 structure[J]. J Phys Chem Solids, 1965, 26(9): 1445. doi: 10.1016/0022-3697(65)90043-0

[25]

Guo H, Lu N, Dai J. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers[J]. J Phys Chem C, 2014, 118(25): 14051. doi: 10.1021/jp505257g

[1]

Li Y, Tongay S, Yue Q. Metal to semiconductor transition in metallic transition metal dichalcogenides[J]. J Appl Phys, 2013, 114(17): 174307. doi: 10.1063/1.4829464

[2]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(24): 136805.

[3]

Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271. doi: 10.1021/nl903868w

[4]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193

[5]

Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83(24): 245213. doi: 10.1103/PhysRevB.83.245213

[6]

Li Y, Yang S, Li J. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field[J]. J Phys Chem C, 2014, 118(41): 23970. doi: 10.1021/jp506881v

[7]

Kumar A, Ahluwalia P K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2(X D S, Se, Te)[J]. Physica B, 2013, 419: 66. doi: 10.1016/j.physb.2013.03.029

[8]

Zeng Z, Yin Z, Huang X. Single-layer semiconducting nanosheets:high-yield preparation and device fabrication[J]. Angewandte Chemie Int Ed, 2011, 50(47): 11093. doi: 10.1002/anie.v50.47

[9]

Li L, Fang X, Zhai T. Electrical transport and highperformance photoconductivity in individual ZrS2 nanobelts[J]. Adv Maters, 2010, 22(37): 4151. doi: 10.1002/adma.v22:37

[10]

Li L, Wang H, Fang X. High-performance Schottky solar cells using ZrS2 nanobelt networks[J]. Energy Environ Sci, 2011, 4(7): 2586. doi: 10.1039/c1ee01286j

[11]

Li Y, Kang J, Li J. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain:first-principles calculations[J]. RSC Adv, 2014, 4(15): 7396. doi: 10.1039/c3ra46090h

[12]

Yu E K, Stewart D A, Tiwari S. Ab initio study of polarizability and induced charge densities in multilayer graphene films[J]. Phys Rev B, 2008, 77(19): 195406. doi: 10.1103/PhysRevB.77.195406

[13]

McCann E. Asymmetry gap in the electronic band structure of bilayer graphene[J]. Phys Rev B, 2006, 74(16): 161403. doi: 10.1103/PhysRevB.74.161403

[14]

Liu Q, Li L, Li Y. Tuning electronic structure of bilayer MoS2 by vertical electric field:a first-principles investigation[J]. J Phys Chem C, 2012, 116(40): 21556. doi: 10.1021/jp307124d

[15]

Qi J, Li X, Qian X. Bandgap engineering of rippled MoS2 monolayer under external electric field[J]. Appl Phys Lett, 2013, 102(17): 173112. doi: 10.1063/1.4803803

[16]

Manjanath A, Samanta A, Pandey T. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain[J]. Nanotechnology, 2015, 26(7): 075701. doi: 10.1088/0957-4484/26/7/075701

[17]

Huang L, Li Y, Wei Z. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure[J]. Sci Rep, 2015, 5: 16448. doi: 10.1038/srep16448

[18]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater, 1996, 6(1): 15. doi: 10.1016/0927-0256(96)00008-0

[19]

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787. doi: 10.1002/(ISSN)1096-987X

[20]

Zywietz T, Neugebauer J, Scheffler M. Adatom diffusion at GaN (0001) and (0001) surfaces[J]. Appl Phys Lett, 1998, 73(4): 487. doi: 10.1063/1.121909

[21]

Ramasubramaniam A, Naveh D, Towe E. Tunable band gaps in bilayer transition-metal dichalcogenides[J]. Phys Rev B, 2011, 84(20): 205325. doi: 10.1103/PhysRevB.84.205325

[22]

Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9(3): 149. doi: 10.1038/nphys2524

[23]

Jiang H. Structural and electronic properties of ZrX2 and HfX2(X D S and Se) from first principles calculations[J]. J Chem Phys, 2011, 134(20): 204705. doi: 10.1063/1.3594205

[24]

Greenaway D L, Nitsche R. Preparation and optical properties of group IV-VI2 chalcogenides having the CdI2 structure[J]. J Phys Chem Solids, 1965, 26(9): 1445. doi: 10.1016/0022-3697(65)90043-0

[25]

Guo H, Lu N, Dai J. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers[J]. J Phys Chem C, 2014, 118(25): 14051. doi: 10.1021/jp505257g

[1]

M. Benaida, K. E. Aiadi, S. Mahtout, S. Djaadi, W. Rammal, M. Harb. Growth behavior and electronic properties of Gen + 1 and AsGen (n = 1–20) clusters: a DFT study. J. Semicond., 2019, 40(3): 032101. doi: 10.1088/1674-4926/40/3/032101

[2]

Soumaia Djaadi, Kamal Eddine Aiadi, Sofiane Mahtout. First principles study of structural, electronic and magnetic properties of SnGen(0, ±1) (n = 1–17) clusters. J. Semicond., 2018, 39(4): 042001. doi: 10.1088/1674-4926/39/4/042001

[3]

Luo Xiaorong, Li Zhaoji, Zhang Bo. Analytical Model for the Electric Field Distribution of an SOI High Voltage Device with a Compound Dielectric Layer. J. Semicond., 2006, 27(11): 2005.

[4]

Luo Xiaorong, , Li Zhaoji. Breakdown Characteristics of SOI LDMOS High VoltageDevices with Variable Low k Dielectric Layer. J. Semicond., 2006, 27(5): 881.

[5]

Luo Xiaorong, Zhang Bo, Li Zhaoji, Tang Xinwei. A Novel SOI High Voltage Device Structure with a Partial Locating Charge Trench. J. Semicond., 2006, 27(1): 115.

[6]

Luo Xiaorong, Li Zhaoji, Zhang Bo. A Highly Heat-Dissipating SOI High Voltage Power Device with a Variable k Dielectric Buried Layer. J. Semicond., 2006, 27(10): 1832.

[7]

Luo Xiaorong, Li Zhaoji, Zhang Bo, Guo Yufeng, Tang Xinwei. A Novel Structure and Its Breakdown Mechanism of a SOI High Voltage Device with a Shielding Trench. J. Semicond., 2005, 26(11): 2154.

[8]

Xue Yuzhi, Martin A Green. Optical Electron Spectroscopy and Electronic Properties for Multilayers ofal/Al203. J. Semicond., 2003, 24(S1): 65.

[9]

Shan Shuping, Xiao Jinglin. Influence of the Electric Field on the Properties of the Bound Magnetopolaron in GaAs Semiconductor Quantum Wells. J. Semicond., 2008, 29(3): 438.

[10]

Yang Pei, Haibin Wu. Effect of uniaxial strain on the structural, electronic and elastic properties of orthorhombic BiMnO3. J. Semicond., 2015, 36(3): 032002. doi: 10.1088/1674-4926/36/3/032002

[11]

Hui Wang, Yingxi Niu, Fei Yang, Yong Cai, Zehong Zhang, Zhongming Zeng, Minrui Wang, Chunhong Zeng, Baoshun Zhang. Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes. J. Semicond., 2015, 36(10): 104006. doi: 10.1088/1674-4926/36/10/104006

[12]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin, Zhang Zhiyong. Electronic transport properties of the armchair silicon carbide nanotube. J. Semicond., 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003

[13]

Liu Hanfa, Zhang Huafu, Lei Chengxin, Yuan Changkun. Influence of the sputtering pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering. J. Semicond., 2009, 30(2): 023001. doi: 10.1088/1674-4926/30/2/023001

[14]

Cao Chunfang, Wu Huizhen, Xu Tianning, Si Jianxiao, Chen Jing, Shen Wenzhong. Effect of Strain on the Lattice Vibrational Properties of PbSe. J. Semicond., 2007, 28(S1): 103.

[15]

Zhao Fengqi, Sarula. Quantum Well Under an External Electric Field. J. Semicond., 2006, 27(5): 830.

[16]

Deng Jinxiang, Chen Guanghua, Beton P H. Electric Characteristics of Pentacene Field Effect Transistor. J. Semicond., 2006, 27(S1): 214.

[17]

Chen Weili, Xiao Jinglin. Bound Polaron in a Quantum Well Under an Electric Field. J. Semicond., 2006, 27(5): 787.

[18]

Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons. J. Semicond., 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002

[19]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

[20]

Safa'a M. Hraibat, Rushdi M-L. Kitaneh, Mohammad M. Abu-Samreh, Abdelkarim M. Saleh. AC-electronic and dielectric properties of semiconducting phthalocyanine compounds:a comparative study. J. Semicond., 2013, 34(11): 112001. doi: 10.1088/1674-4926/34/11/112001

Search

Advanced Search >>

GET CITATION

J M Shang, L Huang, Z M Wei. Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2[J]. J. Semicond., 2017, 38(3): 033001. doi: 10.1088/1674-4926/38/3/033001.

Export: BibTex EndNote

Article Metrics

Article views: 1035 Times PDF downloads: 27 Times Cited by: 0 Times

History

Manuscript received: 15 August 2016 Manuscript revised: 24 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误