J M Shang, L Huang, Z M Wei. Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2[J]. J. Semicond., 2017, 38(3): 033001. doi: 10.1088/1674-4926/38/3/033001.
Abstract: Using first-principles calculations, including Grimme D2 method for van der Waals interactions, we investigate the tuning electronic properties of bilayer zirconium disulfides (ZrS2) subjected to vertical electric field and normal compressive strain. The band gap of ZrS2 bilayer can be flexibly tuned by vertical external electric field. Due to the Stark effect, at critical electric fields about 1.4 V/Å, semiconducting-metallic transition presents. In addition, our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS2 bilayer sheet. The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics.
Key words: vertical electric field, normal compressive strain, electronic properties, zirconium disulfides bilayer
Abstract: Using first-principles calculations, including Grimme D2 method for van der Waals interactions, we investigate the tuning electronic properties of bilayer zirconium disulfides (ZrS2) subjected to vertical electric field and normal compressive strain. The band gap of ZrS2 bilayer can be flexibly tuned by vertical external electric field. Due to the Stark effect, at critical electric fields about 1.4 V/Å, semiconducting-metallic transition presents. In addition, our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS2 bilayer sheet. The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics.
Key words:
vertical electric field, normal compressive strain, electronic properties, zirconium disulfides bilayer
References:
[1] |
Li Y, Tongay S, Yue Q. Metal to semiconductor transition in metallic transition metal dichalcogenides[J]. J Appl Phys, 2013, 114(17): 174307. doi: 10.1063/1.4829464 |
[2] |
Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(24): 136805. |
[3] |
Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271. doi: 10.1021/nl903868w |
[4] |
Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193 |
[5] |
Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83(24): 245213. doi: 10.1103/PhysRevB.83.245213 |
[6] |
Li Y, Yang S, Li J. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field[J]. J Phys Chem C, 2014, 118(41): 23970. doi: 10.1021/jp506881v |
[7] |
Kumar A, Ahluwalia P K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2(X D S, Se, Te)[J]. Physica B, 2013, 419: 66. doi: 10.1016/j.physb.2013.03.029 |
[8] |
Zeng Z, Yin Z, Huang X. Single-layer semiconducting nanosheets:high-yield preparation and device fabrication[J]. Angewandte Chemie Int Ed, 2011, 50(47): 11093. doi: 10.1002/anie.v50.47 |
[9] |
Li L, Fang X, Zhai T. Electrical transport and highperformance photoconductivity in individual ZrS2 nanobelts[J]. Adv Maters, 2010, 22(37): 4151. doi: 10.1002/adma.v22:37 |
[10] |
Li L, Wang H, Fang X. High-performance Schottky solar cells using ZrS2 nanobelt networks[J]. Energy Environ Sci, 2011, 4(7): 2586. doi: 10.1039/c1ee01286j |
[11] |
Li Y, Kang J, Li J. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain:first-principles calculations[J]. RSC Adv, 2014, 4(15): 7396. doi: 10.1039/c3ra46090h |
[12] |
Yu E K, Stewart D A, Tiwari S. Ab initio study of polarizability and induced charge densities in multilayer graphene films[J]. Phys Rev B, 2008, 77(19): 195406. doi: 10.1103/PhysRevB.77.195406 |
[13] |
McCann E. Asymmetry gap in the electronic band structure of bilayer graphene[J]. Phys Rev B, 2006, 74(16): 161403. doi: 10.1103/PhysRevB.74.161403 |
[14] |
Liu Q, Li L, Li Y. Tuning electronic structure of bilayer MoS2 by vertical electric field:a first-principles investigation[J]. J Phys Chem C, 2012, 116(40): 21556. doi: 10.1021/jp307124d |
[15] |
Qi J, Li X, Qian X. Bandgap engineering of rippled MoS2 monolayer under external electric field[J]. Appl Phys Lett, 2013, 102(17): 173112. doi: 10.1063/1.4803803 |
[16] |
Manjanath A, Samanta A, Pandey T. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain[J]. Nanotechnology, 2015, 26(7): 075701. doi: 10.1088/0957-4484/26/7/075701 |
[17] |
Huang L, Li Y, Wei Z. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure[J]. Sci Rep, 2015, 5: 16448. doi: 10.1038/srep16448 |
[18] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater, 1996, 6(1): 15. doi: 10.1016/0927-0256(96)00008-0 |
[19] |
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787. doi: 10.1002/(ISSN)1096-987X |
[20] |
Zywietz T, Neugebauer J, Scheffler M. Adatom diffusion at GaN (0001) and (0001) surfaces[J]. Appl Phys Lett, 1998, 73(4): 487. doi: 10.1063/1.121909 |
[21] |
Ramasubramaniam A, Naveh D, Towe E. Tunable band gaps in bilayer transition-metal dichalcogenides[J]. Phys Rev B, 2011, 84(20): 205325. doi: 10.1103/PhysRevB.84.205325 |
[22] |
Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9(3): 149. doi: 10.1038/nphys2524 |
[23] |
Jiang H. Structural and electronic properties of ZrX2 and HfX2(X D S and Se) from first principles calculations[J]. J Chem Phys, 2011, 134(20): 204705. doi: 10.1063/1.3594205 |
[24] |
Greenaway D L, Nitsche R. Preparation and optical properties of group IV-VI2 chalcogenides having the CdI2 structure[J]. J Phys Chem Solids, 1965, 26(9): 1445. doi: 10.1016/0022-3697(65)90043-0 |
[25] |
Guo H, Lu N, Dai J. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers[J]. J Phys Chem C, 2014, 118(25): 14051. doi: 10.1021/jp505257g |
[1] |
Li Y, Tongay S, Yue Q. Metal to semiconductor transition in metallic transition metal dichalcogenides[J]. J Appl Phys, 2013, 114(17): 174307. doi: 10.1063/1.4829464 |
[2] |
Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(24): 136805. |
[3] |
Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271. doi: 10.1021/nl903868w |
[4] |
Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193 |
[5] |
Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83(24): 245213. doi: 10.1103/PhysRevB.83.245213 |
[6] |
Li Y, Yang S, Li J. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field[J]. J Phys Chem C, 2014, 118(41): 23970. doi: 10.1021/jp506881v |
[7] |
Kumar A, Ahluwalia P K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2(X D S, Se, Te)[J]. Physica B, 2013, 419: 66. doi: 10.1016/j.physb.2013.03.029 |
[8] |
Zeng Z, Yin Z, Huang X. Single-layer semiconducting nanosheets:high-yield preparation and device fabrication[J]. Angewandte Chemie Int Ed, 2011, 50(47): 11093. doi: 10.1002/anie.v50.47 |
[9] |
Li L, Fang X, Zhai T. Electrical transport and highperformance photoconductivity in individual ZrS2 nanobelts[J]. Adv Maters, 2010, 22(37): 4151. doi: 10.1002/adma.v22:37 |
[10] |
Li L, Wang H, Fang X. High-performance Schottky solar cells using ZrS2 nanobelt networks[J]. Energy Environ Sci, 2011, 4(7): 2586. doi: 10.1039/c1ee01286j |
[11] |
Li Y, Kang J, Li J. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain:first-principles calculations[J]. RSC Adv, 2014, 4(15): 7396. doi: 10.1039/c3ra46090h |
[12] |
Yu E K, Stewart D A, Tiwari S. Ab initio study of polarizability and induced charge densities in multilayer graphene films[J]. Phys Rev B, 2008, 77(19): 195406. doi: 10.1103/PhysRevB.77.195406 |
[13] |
McCann E. Asymmetry gap in the electronic band structure of bilayer graphene[J]. Phys Rev B, 2006, 74(16): 161403. doi: 10.1103/PhysRevB.74.161403 |
[14] |
Liu Q, Li L, Li Y. Tuning electronic structure of bilayer MoS2 by vertical electric field:a first-principles investigation[J]. J Phys Chem C, 2012, 116(40): 21556. doi: 10.1021/jp307124d |
[15] |
Qi J, Li X, Qian X. Bandgap engineering of rippled MoS2 monolayer under external electric field[J]. Appl Phys Lett, 2013, 102(17): 173112. doi: 10.1063/1.4803803 |
[16] |
Manjanath A, Samanta A, Pandey T. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain[J]. Nanotechnology, 2015, 26(7): 075701. doi: 10.1088/0957-4484/26/7/075701 |
[17] |
Huang L, Li Y, Wei Z. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure[J]. Sci Rep, 2015, 5: 16448. doi: 10.1038/srep16448 |
[18] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater, 1996, 6(1): 15. doi: 10.1016/0927-0256(96)00008-0 |
[19] |
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787. doi: 10.1002/(ISSN)1096-987X |
[20] |
Zywietz T, Neugebauer J, Scheffler M. Adatom diffusion at GaN (0001) and (0001) surfaces[J]. Appl Phys Lett, 1998, 73(4): 487. doi: 10.1063/1.121909 |
[21] |
Ramasubramaniam A, Naveh D, Towe E. Tunable band gaps in bilayer transition-metal dichalcogenides[J]. Phys Rev B, 2011, 84(20): 205325. doi: 10.1103/PhysRevB.84.205325 |
[22] |
Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9(3): 149. doi: 10.1038/nphys2524 |
[23] |
Jiang H. Structural and electronic properties of ZrX2 and HfX2(X D S and Se) from first principles calculations[J]. J Chem Phys, 2011, 134(20): 204705. doi: 10.1063/1.3594205 |
[24] |
Greenaway D L, Nitsche R. Preparation and optical properties of group IV-VI2 chalcogenides having the CdI2 structure[J]. J Phys Chem Solids, 1965, 26(9): 1445. doi: 10.1016/0022-3697(65)90043-0 |
[25] |
Guo H, Lu N, Dai J. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers[J]. J Phys Chem C, 2014, 118(25): 14051. doi: 10.1021/jp505257g |
J M Shang, L Huang, Z M Wei. Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2[J]. J. Semicond., 2017, 38(3): 033001. doi: 10.1088/1674-4926/38/3/033001.
Article views: 2425 Times PDF downloads: 31 Times Cited by: 0 Times
Manuscript received: 15 August 2016 Manuscript revised: 24 November 2016 Online: Published: 01 March 2017
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2