J. Semicond. > Volume 38 > Issue 3 > Article Number: 033007

Colloidal synthesis and characterization of Cu2ZnSnS4 nanoplates

S. Ananthakumar 1, , , J. Ram Kumar 1, 2, and S. Moorthy Babu 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Synthesis of copper zinc tin sulphide (Cu2ZnSnS4) with nanoplate morphology was achieved through colloidal method using oleic acid as capping agent and solvent with 1-octadecene (1-ODE) at 240℃. X-ray diffraction (XRD) analysis shows that the synthesized nanoplates possessed pure kesterite phase. SEM analysis clearly shows the formation of nanoplates having the size of about 50-100 nm. Electron spin resonance (ESR) spectrum analysis of the prepared nanoplates shows that the valence state of copper (Ⅱ) which indicates the strong coupling with other metal ions. Thermo gravimetric/differential thermal analysis (TG/DTA) analysis shows the weight loss of sample at 450℃ predicting the loss of capping ligands on the surface of the nanoparticles. The possible mechanism for the conversion of nanoplate-like structures during synthesis was discussed. The results are discussed in detail.

Key words: colloidal methodsolar cellskesteritesnanoplatesoleic acid

Abstract: Synthesis of copper zinc tin sulphide (Cu2ZnSnS4) with nanoplate morphology was achieved through colloidal method using oleic acid as capping agent and solvent with 1-octadecene (1-ODE) at 240℃. X-ray diffraction (XRD) analysis shows that the synthesized nanoplates possessed pure kesterite phase. SEM analysis clearly shows the formation of nanoplates having the size of about 50-100 nm. Electron spin resonance (ESR) spectrum analysis of the prepared nanoplates shows that the valence state of copper (Ⅱ) which indicates the strong coupling with other metal ions. Thermo gravimetric/differential thermal analysis (TG/DTA) analysis shows the weight loss of sample at 450℃ predicting the loss of capping ligands on the surface of the nanoparticles. The possible mechanism for the conversion of nanoplate-like structures during synthesis was discussed. The results are discussed in detail.

Key words: colloidal methodsolar cellskesteritesnanoplatesoleic acid



References:

[1]

Abermmaan S. Non-vacuum processed next generation thin film photovoltaics:towards marketable efficiency and production of CZTS based solar cells[J]. Sol Energy, 2013, 94: 70.

[2]

Ding S, Shengzhi X, Li Z. Influence of selenium evaporation temperature on the structure of Cu2ZnSnSe4 thin film deposited by a co-evaporation process[J]. J Semicond, 2015, 36(4): 044009. doi: 10.1088/1674-4926/36/4/044009

[3]

Ding S, Yang G, Li Z. Impact of Cu-rich growth on the Cu2ZnSnSe4 surface morphology and related solar cells behavior[J]. J Semicond, 2016, 37(1): 013004. doi: 10.1088/1674-4926/37/1/013004

[4]

Ramasamy K, Malik M A, O'Brien P. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells[J]. Chem Commun, 2012, 48: 5703. doi: 10.1039/c2cc30792h

[5]

Liu W C, Guo B L, Wu X S. Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots:band-gap engineering and phonon confinement effect[J]. J Mater Chem A, 2013, 1: 3182. doi: 10.1039/c3ta00357d

[6]

Zhou J, You L, Li S. Preparation and characterization of Cu2ZnSnS4 microparticles via a facile solution route[J]. Mater Lett, 2012, 81: 248. doi: 10.1016/j.matlet.2012.05.023

[7]

Jiang F, Shen H. Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor[J]. RSC Adv, 2013, 3: 23474. doi: 10.1039/c3ra42333f

[8]

Liu F, Li Y, Zhang K, Wang B. In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering[J]. Sol Energy Mater Sol Cells, 2010, 94: 2431. doi: 10.1016/j.solmat.2010.08.003

[9]

Katagiri H. Cu2ZnSnS4 thin film solar cells[J]. Thin Solid Films, 2005, 480/481: 426. doi: 10.1016/j.tsf.2004.11.024

[10]

Mali S S, Patil B M, Betty C A. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique:characterization and application[J]. Electrochem Acta, 2012, 66: 216. doi: 10.1016/j.electacta.2012.01.079

[11]

Zhao Z Y, Zhao X. Electronic, optical and mechanical properties of Cu2ZnSnS4 with four crystal structures[J]. J Semicond, 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[12]

Zhao Y, Zhou W H, Jiao J. Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals[J]. Mater Lett, 2013, 96: 174. doi: 10.1016/j.matlet.2013.01.059

[13]

Xie W, Jiang X, Zou C, Li D. Synthesis of highly dispersed Cu2ZnSnS4 nanoparticles by solvothermal method for photovoltaic application[J]. Physica E, 2012, 45: 16. doi: 10.1016/j.physe.2012.05.022

[14]

Flynn B, Braly I, Glover P A. Continuous flow mesofluidic synthesis of Cu2ZnSnS4 nanoparticle Inks[J]. Mater Lett, 2013, 107: 214. doi: 10.1016/j.matlet.2013.06.023

[15]

Zhou H, Hsu W C, Duan H S. CZTS nanocrystals:a promising approach for next generation thin film photovoltaics[J]. Energy Environ Sci, 2013, 6: 2822. doi: 10.1039/c3ee41627e

[16]

Wang C L, Manthiram A. Low-cost CZTSSe solar cells fabricated with low band gap CZTSe nanocrystals, environmentally friendly binder, and non vacuum processes[J]. ACS Sustainable Chem Eng, 2014, 2(4): 561. doi: 10.1021/sc400465m

[17]

Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid processed absorber[J]. Adv Mater, 2010, 22(20): E156. doi: 10.1002/adma.200904155

[18]

Wozny S, Wang K, Zhou W. Cu2ZnSnS4 nanoplate arrays synthesized by pulsed laser deposition with high catalytic activity as counter electrodes for dye-sensitized solar cell applications[J]. J Mater Chem A, 2013, 1: 15517. doi: 10.1039/c3ta13358c

[19]

Chang J, Waclawik E R. Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nano-structures:insight into the universal phase-selectivity mechanism[J]. Cryst Eng Comm, 2013, 15: 5612. doi: 10.1039/c3ce40284c

[20]

Lee J, Lee S H, Hahn J S. Effects of solvents on the synthesis of CuInSe2 nanoparticles for thin film solar cells[J]. J Nanosci Nanotechnol, 2014, 14(12): 9313. doi: 10.1166/jnn.2014.10146

[21]

Gong F, Tian S, Liu B. Oleic acid assisted formation mechanism of CuInS2 nanocrystals with tunable structures[J]. RSC Adv, 2014, 4: 36875. doi: 10.1039/C4RA03957B

[22]

Freymeyer N J, Cunningham P D, Jones E C. Influence of solvents reducing ability on copper sulfide crystal phase[J]. Cryst Growth Des, 2013, 13(9): 4059. doi: 10.1021/cg400895d

[23]

Li J, Bloemen M, Parisi J. Role of copper sulfide seeds in the growth process of CuInS2 nanorods and networks[J]. ACS Appl Mater Interfaces, 2014, 6(22): 20535. doi: 10.1021/am5061454

[24]

Yu W W, Peng X. Formation of high-quality CdS and other Ⅱ-VI semiconductor nanocrystals in non-coordinating solvents:tunable reactivity of monomers[J]. Angewd Chem, 2002, 41(13): 2368. doi: 10.1002/(ISSN)1521-3773

[25]

Edler M, Rath T, Schenk A. Copper zinc tin sulfide layers prepared from solution processable metal dithiocarbamate precursors[J]. Mater Chem Phys, 2012, 136: 582. doi: 10.1016/j.matchemphys.2012.07.030

[26]

Kameyama T, Osaki T, Okazaki K I. Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films[J]. J Mater Chem, 2010, 20: 5319. doi: 10.1039/c0jm00454e

[27]

Tan J M R, Lee Y H, Pedireddy S. Understanding the synthetic pathway of a single-phase quaternary semiconductor using surface-enhanced Raman scattering:a case of wurtzite Cu2ZnSnS4 nanoparticles[J]. J Am Chem Soc, 2014, 136(18): 6684. doi: 10.1021/ja501786s

[28]

McPhail M R, Weiss E A. Role of organosulfur compounds in the growth and final surface chemistry of PbS quantum dots[J]. Chem Mater, 2014, 26: 3377. doi: 10.1021/cm4040819

[29]

Zhang X, Liu Q, Meng L. In-plane co assembly route to atomically thick inorganic-organic hybrid nanosheets[J]. ACS Nano, 2013, 7(2): 1682. doi: 10.1021/nn3056719

[30]

Acharya S, Dutta M, Sarkar S. Synthesis of micrometer length indium sulfide nanosheets and study of their dopant induced photoresponse properties[J]. Chem Mater, 2012, 24(10): 1779. doi: 10.1021/cm3003063

[31]

Chang S H, Chiu B C, Gao T L. Selective synthesis of copper gallium sulfide (CuGaS2/nanostructures of different sizes, crystal phases, and morphologies[J]. Cryst Eng Comm, 2014, 16: 3323. doi: 10.1039/c3ce42530d

[32]

Chory C, Zutz F, Witt F. Synthesis and characterization of Cu2ZnSnS4[J]. Phys Status Solidi C, 2010, 7(6): 1486. doi: 10.1002/pssc.v7:6

[33]

Khan M A M, Kumar S, Alhoshan M. Spray pyrolysed Cu2ZnSnS4 absorbing layer:a potential candidate for photovoltaic applications[J]. Opt Laser Technol, 2013, 49: 196. doi: 10.1016/j.optlastec.2012.12.012

[1]

Abermmaan S. Non-vacuum processed next generation thin film photovoltaics:towards marketable efficiency and production of CZTS based solar cells[J]. Sol Energy, 2013, 94: 70.

[2]

Ding S, Shengzhi X, Li Z. Influence of selenium evaporation temperature on the structure of Cu2ZnSnSe4 thin film deposited by a co-evaporation process[J]. J Semicond, 2015, 36(4): 044009. doi: 10.1088/1674-4926/36/4/044009

[3]

Ding S, Yang G, Li Z. Impact of Cu-rich growth on the Cu2ZnSnSe4 surface morphology and related solar cells behavior[J]. J Semicond, 2016, 37(1): 013004. doi: 10.1088/1674-4926/37/1/013004

[4]

Ramasamy K, Malik M A, O'Brien P. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells[J]. Chem Commun, 2012, 48: 5703. doi: 10.1039/c2cc30792h

[5]

Liu W C, Guo B L, Wu X S. Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots:band-gap engineering and phonon confinement effect[J]. J Mater Chem A, 2013, 1: 3182. doi: 10.1039/c3ta00357d

[6]

Zhou J, You L, Li S. Preparation and characterization of Cu2ZnSnS4 microparticles via a facile solution route[J]. Mater Lett, 2012, 81: 248. doi: 10.1016/j.matlet.2012.05.023

[7]

Jiang F, Shen H. Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor[J]. RSC Adv, 2013, 3: 23474. doi: 10.1039/c3ra42333f

[8]

Liu F, Li Y, Zhang K, Wang B. In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering[J]. Sol Energy Mater Sol Cells, 2010, 94: 2431. doi: 10.1016/j.solmat.2010.08.003

[9]

Katagiri H. Cu2ZnSnS4 thin film solar cells[J]. Thin Solid Films, 2005, 480/481: 426. doi: 10.1016/j.tsf.2004.11.024

[10]

Mali S S, Patil B M, Betty C A. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique:characterization and application[J]. Electrochem Acta, 2012, 66: 216. doi: 10.1016/j.electacta.2012.01.079

[11]

Zhao Z Y, Zhao X. Electronic, optical and mechanical properties of Cu2ZnSnS4 with four crystal structures[J]. J Semicond, 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[12]

Zhao Y, Zhou W H, Jiao J. Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals[J]. Mater Lett, 2013, 96: 174. doi: 10.1016/j.matlet.2013.01.059

[13]

Xie W, Jiang X, Zou C, Li D. Synthesis of highly dispersed Cu2ZnSnS4 nanoparticles by solvothermal method for photovoltaic application[J]. Physica E, 2012, 45: 16. doi: 10.1016/j.physe.2012.05.022

[14]

Flynn B, Braly I, Glover P A. Continuous flow mesofluidic synthesis of Cu2ZnSnS4 nanoparticle Inks[J]. Mater Lett, 2013, 107: 214. doi: 10.1016/j.matlet.2013.06.023

[15]

Zhou H, Hsu W C, Duan H S. CZTS nanocrystals:a promising approach for next generation thin film photovoltaics[J]. Energy Environ Sci, 2013, 6: 2822. doi: 10.1039/c3ee41627e

[16]

Wang C L, Manthiram A. Low-cost CZTSSe solar cells fabricated with low band gap CZTSe nanocrystals, environmentally friendly binder, and non vacuum processes[J]. ACS Sustainable Chem Eng, 2014, 2(4): 561. doi: 10.1021/sc400465m

[17]

Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid processed absorber[J]. Adv Mater, 2010, 22(20): E156. doi: 10.1002/adma.200904155

[18]

Wozny S, Wang K, Zhou W. Cu2ZnSnS4 nanoplate arrays synthesized by pulsed laser deposition with high catalytic activity as counter electrodes for dye-sensitized solar cell applications[J]. J Mater Chem A, 2013, 1: 15517. doi: 10.1039/c3ta13358c

[19]

Chang J, Waclawik E R. Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nano-structures:insight into the universal phase-selectivity mechanism[J]. Cryst Eng Comm, 2013, 15: 5612. doi: 10.1039/c3ce40284c

[20]

Lee J, Lee S H, Hahn J S. Effects of solvents on the synthesis of CuInSe2 nanoparticles for thin film solar cells[J]. J Nanosci Nanotechnol, 2014, 14(12): 9313. doi: 10.1166/jnn.2014.10146

[21]

Gong F, Tian S, Liu B. Oleic acid assisted formation mechanism of CuInS2 nanocrystals with tunable structures[J]. RSC Adv, 2014, 4: 36875. doi: 10.1039/C4RA03957B

[22]

Freymeyer N J, Cunningham P D, Jones E C. Influence of solvents reducing ability on copper sulfide crystal phase[J]. Cryst Growth Des, 2013, 13(9): 4059. doi: 10.1021/cg400895d

[23]

Li J, Bloemen M, Parisi J. Role of copper sulfide seeds in the growth process of CuInS2 nanorods and networks[J]. ACS Appl Mater Interfaces, 2014, 6(22): 20535. doi: 10.1021/am5061454

[24]

Yu W W, Peng X. Formation of high-quality CdS and other Ⅱ-VI semiconductor nanocrystals in non-coordinating solvents:tunable reactivity of monomers[J]. Angewd Chem, 2002, 41(13): 2368. doi: 10.1002/(ISSN)1521-3773

[25]

Edler M, Rath T, Schenk A. Copper zinc tin sulfide layers prepared from solution processable metal dithiocarbamate precursors[J]. Mater Chem Phys, 2012, 136: 582. doi: 10.1016/j.matchemphys.2012.07.030

[26]

Kameyama T, Osaki T, Okazaki K I. Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films[J]. J Mater Chem, 2010, 20: 5319. doi: 10.1039/c0jm00454e

[27]

Tan J M R, Lee Y H, Pedireddy S. Understanding the synthetic pathway of a single-phase quaternary semiconductor using surface-enhanced Raman scattering:a case of wurtzite Cu2ZnSnS4 nanoparticles[J]. J Am Chem Soc, 2014, 136(18): 6684. doi: 10.1021/ja501786s

[28]

McPhail M R, Weiss E A. Role of organosulfur compounds in the growth and final surface chemistry of PbS quantum dots[J]. Chem Mater, 2014, 26: 3377. doi: 10.1021/cm4040819

[29]

Zhang X, Liu Q, Meng L. In-plane co assembly route to atomically thick inorganic-organic hybrid nanosheets[J]. ACS Nano, 2013, 7(2): 1682. doi: 10.1021/nn3056719

[30]

Acharya S, Dutta M, Sarkar S. Synthesis of micrometer length indium sulfide nanosheets and study of their dopant induced photoresponse properties[J]. Chem Mater, 2012, 24(10): 1779. doi: 10.1021/cm3003063

[31]

Chang S H, Chiu B C, Gao T L. Selective synthesis of copper gallium sulfide (CuGaS2/nanostructures of different sizes, crystal phases, and morphologies[J]. Cryst Eng Comm, 2014, 16: 3323. doi: 10.1039/c3ce42530d

[32]

Chory C, Zutz F, Witt F. Synthesis and characterization of Cu2ZnSnS4[J]. Phys Status Solidi C, 2010, 7(6): 1486. doi: 10.1002/pssc.v7:6

[33]

Khan M A M, Kumar S, Alhoshan M. Spray pyrolysed Cu2ZnSnS4 absorbing layer:a potential candidate for photovoltaic applications[J]. Opt Laser Technol, 2013, 49: 196. doi: 10.1016/j.optlastec.2012.12.012

[1]

Xinzhe Min, Pengchen Zhu, Shuai Gu, Jia Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004

[2]

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen. An InGaAs graded buffer layer in solar cells. J. Semicond., 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

[3]

Li Chen, Xinliang Chen, Yiming Liu, Ying Zhao, Xiaodan Zhang. Research on ZnO/Si heterojunction solar cells. J. Semicond., 2017, 38(5): 054005. doi: 10.1088/1674-4926/38/5/054005

[4]

Chen Xinliang, Xue Junming, Sun Jian, Zhao Ying, Geng Xinhua. Growth of Textured ZnO Thin Films and Their Front Electrodes for Application in Solar Cells. J. Semicond., 2007, 28(7): 1072.

[5]

Liu Junpeng, Qu Shengchun, Zeng Xiangbo, Xu Ying, Chen Yonghai, Wang Zhijie, Zhou Huiying, Wang Zhanguo. Hybrid Organic/Inorganic Bulk Heteroj unction Solar Cells. J. Semicond., 2007, 28(S1): 364.

[6]

A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

[7]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[8]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[9]

Xing Zhao, Jia Rui, Ding Wuchang, Meng Yanlong, Jin Zhi, Liu Xinyu. Improving poor fill factors for solar cells via light-induced plating. J. Semicond., 2012, 33(9): 094008. doi: 10.1088/1674-4926/33/9/094008

[10]

Tang Yehua, Zhou Chunlan, Wang Wenjing, Zhou Su, Zhao Yan, Zhao Lei, Li Hailing, Yan Baojun, Chen Jingwei, Fei Jianming, Cao Hongbin. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process. J. Semicond., 2012, 33(6): 064007. doi: 10.1088/1674-4926/33/6/064007

[11]

Zhang Qunfang, Zhu Meifang, Liu Fengzhen, Zhou Yuqin. High-Efficiency n-nc-Si:H/p-c-Si Heterojunction Solar Cells. J. Semicond., 2007, 28(1): 96.

[12]

Muhammad Nawaz, Ashfaq Ahmad. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. J. Semicond., 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

[13]

Chen Yongsheng, Yang Shi'e, Wang Jianhua, Lu Jingxiao, Gao Xiaoyong, Gu Jinhua, Zheng Wen, Zhao Shangli. Deposition of p-Type Microcrystalline Silicon Film and Its Application in Microcrystalline Silicon Solar Cells. J. Semicond., 2008, 29(11): 2130.

[14]

He Weiyu, Sun Yun, Qiao Zaixiang, Ao Jianping, Wang Xinglei, Li Changjian. J-V Characteristics of Cu(In1-xGax)Se2 Thin Film Solar Cells. J. Semicond., 2007, 28(12): 1941.

[15]

Shuwei Zhang, Xiangbo Zeng. Influence of band gap of p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density in thin-film silicon solar cells. J. Semicond., 2017, 38(11): 114007. doi: 10.1088/1674-4926/38/11/114007

[16]

Sun Fuhe, Zhang Xiaodan, Zhao Ying, Wang Shifeng, Han Xiaoyan, Li Guijun, Wei Changchun, Sun Jian, Hou Guofu, Zhang Dekun, Geng Xinhua, Xiong Shaozhen. Doped-Chamber Deposition of Intrinsic Microcrystalline Silicon Thin Films and Its Application in Solar Cells. J. Semicond., 2008, 29(5): 855.

[17]

Kang Luo, Yulin Sun, Liyu Zhou, Fang Wang, Fang Wu. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer. J. Semicond., 2017, 38(8): 084006. doi: 10.1088/1674-4926/38/8/084006

[18]

E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001

[19]

Kewei Cao, Tong Liu, Jingming Liu, Hui Xie, Dongyan Tao, Youwen Zhao, Zhiyuan Dong, Feng Hui. Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell. J. Semicond., 2016, 37(6): 063002. doi: 10.1088/1674-4926/37/6/063002

[20]

Abou El-Maaty M. Aly, A. Nasr. The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell. J. Semicond., 2015, 36(4): 042001. doi: 10.1088/1674-4926/36/4/042001

Search

Advanced Search >>

GET CITATION

S Ananthakumar, J R Kumar, S M Babu. Colloidal synthesis and characterization of Cu2ZnSnS4 nanoplates[J]. J. Semicond., 2017, 38(3): 033007. doi: 10.1088/1674-4926/38/3/033007.

Export: BibTex EndNote

Article Metrics

Article views: 1081 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 06 July 2016 Manuscript revised: 19 September 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误