J. Semicond. > Volume 38 > Issue 3 > Article Number: 034001

Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets

Yan Wang , , Le Huang and Zhongming Wei

+ Author Affilications + Find other works by these authors

PDF

Abstract: 2D SnS2 nanosheets are exfoliated by micromechanical exfoliation technique from SnS2 single crystals which are synthesized by CVT methods. Monolayer SnS2 nanosheet has been obtained and the Raman spectrum shows that A1g mode of monolayer SnS2 shows a slight softening compared with bulk SnS2 single crystal. The field effect transistors (FETs) based on multilayer SnS2 nanosheets have been fabricated, of which the electrical and photoelectrical properties have been measured. Under dark condition, with Vsd of 1 V, our SnS2 FET shows n-type behavior. The carrier mobility of the FETs reach 3.51 cm2V-1s-1 and the ‘ON/OFF’ ratio is about 5×102. The SnS2 FET is also illuminated under 532 nm laser with the power of 500 mW/cm2. The light absorption causes an increment of carrier mobility (from 3.51 cm2V-1s-1 under dark condition to 3.85 cm2V-1s-1 under 532 nm laser illumination with the power of 500 mW/cm2) of SnS2. The responsivity (R) and detectivity of our multilayer device under 500 mW/cm2 532 nm is 2.08 A/W and 6×106 J, respectively. All the above properties indicate the potential of SnS2 nanosheets to be used as FETs and phototransistors.

Key words: two-dimensional materialsTMDsSnS2

Abstract: 2D SnS2 nanosheets are exfoliated by micromechanical exfoliation technique from SnS2 single crystals which are synthesized by CVT methods. Monolayer SnS2 nanosheet has been obtained and the Raman spectrum shows that A1g mode of monolayer SnS2 shows a slight softening compared with bulk SnS2 single crystal. The field effect transistors (FETs) based on multilayer SnS2 nanosheets have been fabricated, of which the electrical and photoelectrical properties have been measured. Under dark condition, with Vsd of 1 V, our SnS2 FET shows n-type behavior. The carrier mobility of the FETs reach 3.51 cm2V-1s-1 and the ‘ON/OFF’ ratio is about 5×102. The SnS2 FET is also illuminated under 532 nm laser with the power of 500 mW/cm2. The light absorption causes an increment of carrier mobility (from 3.51 cm2V-1s-1 under dark condition to 3.85 cm2V-1s-1 under 532 nm laser illumination with the power of 500 mW/cm2) of SnS2. The responsivity (R) and detectivity of our multilayer device under 500 mW/cm2 532 nm is 2.08 A/W and 6×106 J, respectively. All the above properties indicate the potential of SnS2 nanosheets to be used as FETs and phototransistors.

Key words: two-dimensional materialsTMDsSnS2



References:

[1]

Schwierz F. Graphene transistors[J]. Nat Nanotechnol, 2010, 5(7): 487. doi: 10.1038/nnano.2010.89

[2]

Geim A K. Graphene:status and prospects[J]. Science, 2009, 324(5934): 1530. doi: 10.1126/science.1158877

[3]

Avouris P, Chen Z, Perebeinos V. Carbon-based electronics[J]. Nat Nanotechnol, 2007, 2(10): 605. doi: 10.1038/nnano.2007.300

[4]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896

[5]

Chen F, Xia J L, Ferry D K. Dielectric screening enhanced performance in graphene FET[J]. Nano Lett, 2009, 9(7): 2571. doi: 10.1021/nl900725u

[6]

Schedin F, Geim A K, Morozov S V. Detection of individual gas molecules adsorbed on graphene[J]. Nat Mater, 2007, 6(9): 652. doi: 10.1038/nmat1967

[7]

Das S, Robinson J A, Dubey M. Beyond graphene:progress in novel two-dimensional materials and van der Waals solids[J]. Ann Rev Mater Res, 2015, 45: 1. doi: 10.1146/annurev-matsci-070214-021034

[8]

Lee Y H, Yu L L, Wang H. Synthesis and transfer of singlelayer transition metal disulfides on diverse surfaces[J]. Nano Lett, 2013, 13(4): 1852. doi: 10.1021/nl400687n

[9]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotech, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193

[10]

Wang F, Wang Z X, Wang Q S. Synthesis, properties and applications of 2D non-graphene materials[J]. Nanotechnology, 2015, 26(29): 26.

[11]

Elias A L, Perea-Lopez N, Castro-Beltran A. Controlled synthesis and transfer of large-area WS2 sheets:from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235. doi: 10.1021/nn400971k

[12]

Hwang W S, Remskar M, Yan R S. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior[J]. Appl Phys Lett, 2012, 101(1): 4.

[13]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84(17): 3301. doi: 10.1063/1.1723695

[14]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12(7): 3788. doi: 10.1021/nl301702r

[15]

Tsai D S, Liu K K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7(5): 3905. doi: 10.1021/nn305301b

[16]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[17]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[18]

Yue Q, Shao Z Z, Chang S L. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field[J]. Nanoscale Res Lett, 2013, 8: 7. doi: 10.1186/1556-276X-8-7

[19]

He Q Y, Zeng Z Y, Yin Z Y. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994. doi: 10.1002/smll.v8.19

[20]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[21]

Su G, Hadjiev V G, Loya P E. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Lett, 2015, 15(1): 506. doi: 10.1021/nl503857r

[22]

Ricica T, Strizik L, Dostal L. SnS and SnS2 thin films deposited using a spin-coating technique from intramolecularly coordinated organotin sulfides[J]. Appl Organomet Chem, 2015, 29(3): 176. doi: 10.1002/aoc.v29.3

[23]

Kiruthigaa G, Manoharan C, Bououdina M. Structural, optical and photocatalytic properties of Ce-doped SnS2 nanoflakes[J]. Solid State Sci, 2015, 44: 32. doi: 10.1016/j.solidstatesciences.2015.04.003

[24]

Ahn J H, Lee M J, Heo H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals[J]. Nano Lett, 2015, 15(6): 3703. doi: 10.1021/acs.nanolett.5b00079

[25]

Kiruthigaa G, Manoharan C, Raju C. Solid state synthesis and spectral investigations of nanostructure SnS2[J]. Spectroc Acta A, 2014, 129: 415. doi: 10.1016/j.saa.2014.03.088

[26]

Li H, Zhang Q, Yap C C R. From bulk to monolayer MoS2:evolution of Raman scattering[J]. Adv Funct Mater, 2012, 22(7): 1385. doi: 10.1002/adfm.v22.7

[27]

Tonndorf P, Schmidt R, Bottger P. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J]. Opt Express, 2013, 21(4): 4908. doi: 10.1364/OE.21.004908

[28]

Wang Q, Li J, Lei Y. Oriented growth of Pb1-xSnxTe nanowire arrays for integration of flexible infrared detectors[J]. Adv Mater, 2015, 28(18): 3596.

[29]

Wang X, Wang P, Wang J. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Adv Mater, 2015, 27(42): 6575. doi: 10.1002/adma.201503340

[30]

Xu K, Wang Z, Wang F. Ultrasensitive phototransistors based on few-layered HfS2[J]. Adv Mater, 2015, 27(47): 7881. doi: 10.1002/adma.201503864

[31]

Zhong M, Wei Z, Meng X. High-performance single crystalline UV photodetectors of β-Ga2O3[J]. J Alloys Compd, 2015, 619: 572. doi: 10.1016/j.jallcom.2014.09.070

[1]

Schwierz F. Graphene transistors[J]. Nat Nanotechnol, 2010, 5(7): 487. doi: 10.1038/nnano.2010.89

[2]

Geim A K. Graphene:status and prospects[J]. Science, 2009, 324(5934): 1530. doi: 10.1126/science.1158877

[3]

Avouris P, Chen Z, Perebeinos V. Carbon-based electronics[J]. Nat Nanotechnol, 2007, 2(10): 605. doi: 10.1038/nnano.2007.300

[4]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896

[5]

Chen F, Xia J L, Ferry D K. Dielectric screening enhanced performance in graphene FET[J]. Nano Lett, 2009, 9(7): 2571. doi: 10.1021/nl900725u

[6]

Schedin F, Geim A K, Morozov S V. Detection of individual gas molecules adsorbed on graphene[J]. Nat Mater, 2007, 6(9): 652. doi: 10.1038/nmat1967

[7]

Das S, Robinson J A, Dubey M. Beyond graphene:progress in novel two-dimensional materials and van der Waals solids[J]. Ann Rev Mater Res, 2015, 45: 1. doi: 10.1146/annurev-matsci-070214-021034

[8]

Lee Y H, Yu L L, Wang H. Synthesis and transfer of singlelayer transition metal disulfides on diverse surfaces[J]. Nano Lett, 2013, 13(4): 1852. doi: 10.1021/nl400687n

[9]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotech, 2012, 7(11): 699. doi: 10.1038/nnano.2012.193

[10]

Wang F, Wang Z X, Wang Q S. Synthesis, properties and applications of 2D non-graphene materials[J]. Nanotechnology, 2015, 26(29): 26.

[11]

Elias A L, Perea-Lopez N, Castro-Beltran A. Controlled synthesis and transfer of large-area WS2 sheets:from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235. doi: 10.1021/nn400971k

[12]

Hwang W S, Remskar M, Yan R S. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior[J]. Appl Phys Lett, 2012, 101(1): 4.

[13]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84(17): 3301. doi: 10.1063/1.1723695

[14]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12(7): 3788. doi: 10.1021/nl301702r

[15]

Tsai D S, Liu K K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7(5): 3905. doi: 10.1021/nn305301b

[16]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[17]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[18]

Yue Q, Shao Z Z, Chang S L. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field[J]. Nanoscale Res Lett, 2013, 8: 7. doi: 10.1186/1556-276X-8-7

[19]

He Q Y, Zeng Z Y, Yin Z Y. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994. doi: 10.1002/smll.v8.19

[20]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[21]

Su G, Hadjiev V G, Loya P E. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Lett, 2015, 15(1): 506. doi: 10.1021/nl503857r

[22]

Ricica T, Strizik L, Dostal L. SnS and SnS2 thin films deposited using a spin-coating technique from intramolecularly coordinated organotin sulfides[J]. Appl Organomet Chem, 2015, 29(3): 176. doi: 10.1002/aoc.v29.3

[23]

Kiruthigaa G, Manoharan C, Bououdina M. Structural, optical and photocatalytic properties of Ce-doped SnS2 nanoflakes[J]. Solid State Sci, 2015, 44: 32. doi: 10.1016/j.solidstatesciences.2015.04.003

[24]

Ahn J H, Lee M J, Heo H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals[J]. Nano Lett, 2015, 15(6): 3703. doi: 10.1021/acs.nanolett.5b00079

[25]

Kiruthigaa G, Manoharan C, Raju C. Solid state synthesis and spectral investigations of nanostructure SnS2[J]. Spectroc Acta A, 2014, 129: 415. doi: 10.1016/j.saa.2014.03.088

[26]

Li H, Zhang Q, Yap C C R. From bulk to monolayer MoS2:evolution of Raman scattering[J]. Adv Funct Mater, 2012, 22(7): 1385. doi: 10.1002/adfm.v22.7

[27]

Tonndorf P, Schmidt R, Bottger P. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J]. Opt Express, 2013, 21(4): 4908. doi: 10.1364/OE.21.004908

[28]

Wang Q, Li J, Lei Y. Oriented growth of Pb1-xSnxTe nanowire arrays for integration of flexible infrared detectors[J]. Adv Mater, 2015, 28(18): 3596.

[29]

Wang X, Wang P, Wang J. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Adv Mater, 2015, 27(42): 6575. doi: 10.1002/adma.201503340

[30]

Xu K, Wang Z, Wang F. Ultrasensitive phototransistors based on few-layered HfS2[J]. Adv Mater, 2015, 27(47): 7881. doi: 10.1002/adma.201503864

[31]

Zhong M, Wei Z, Meng X. High-performance single crystalline UV photodetectors of β-Ga2O3[J]. J Alloys Compd, 2015, 619: 572. doi: 10.1016/j.jallcom.2014.09.070

[1]

Shuliang Ren, Qinghai Tan, Jun Zhang. position of the monolay Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 000000.

[2]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[3]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[4]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[5]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[6]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[7]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[8]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[9]

Jie Jiang, Zhenhua Ni. Defect engineering in two-dimensional materials. J. Semicond., 2019, 40(7): 000000.

[10]

Bahniman Ghosh, Naval Kishor. An ab initio study of strained two-dimensional MoSe2. J. Semicond., 2015, 36(4): 043001. doi: 10.1088/1674-4926/36/4/043001

[11]

Anna V. Krivosheeva, Victor L. Shaposhnikov, Victor E. Borisenko, Jean-Louis Lazzari, Chow Waileong, Julia Gusakova, Beng Kang Tay. Theoretical study of defect impact on two-dimensional MoS2. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002

[12]

Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond., 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001

[13]

Lun Dai. Room-temperature stable two-dimensional ferroelectric materials. J. Semicond., 2019, 40(6): 060402. doi: 10.1088/1674-4926/40/6/060402

[14]

Yue Li, Ming Gong, Hualing Zeng. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor. J. Semicond., 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002

[15]

M. R. Fadavieslam. Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis. J. Semicond., 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005

[16]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[17]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[18]

Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials. J. Semicond., 2019, 40(0): 000000.

[19]

Wang Yu, Zhou Zhiwen, Li Cheng, Chen Songyan, Lai Hongkai. Preparation of Two-Dimensional Patterned Silicon Substrate by Holographic Lithography. J. Semicond., 2007, 28(5): 774.

[20]

Congxin Xia, Jingbo Li. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond., 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001

Search

Advanced Search >>

GET CITATION

Y Wang, L Huang, Z M Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets[J]. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001.

Export: BibTex EndNote

Article Metrics

Article views: 1165 Times PDF downloads: 17 Times Cited by: 0 Times

History

Manuscript received: 27 September 2016 Manuscript revised: 27 October 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误