J. Semicond. > Volume 38 > Issue 4 > Article Number: 042001

Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes

Xiaohui Yi , Zhiwei Huang , Guangyang Lin , Cheng Li , , Songyan Chen , Wei Huang , Jun Li and Jianyuan Wang

+ Author Affilications + Find other works by these authors

PDF

Abstract: The influence of defects in low temperature Ge layer on electrical characteristics of p-Ge/i-Ge/n-Si and n-Ge/i-Ge/p-Ge photodiodes (PDs) was studied. Due to a two-step growth method, there are high defect densities in low-temperature buffer Ge layer. It is shown that the defects in low-temperature Ge layer change the band diagrams and the distribution of electric field, leading to the increase of the total dark current for p-Ge/i-Ge/n-Si PDs, whereas these defects have no influence on the dark current for n-Ge/i-Ge/p-Ge PDs. As a complement, a three-dimensional simulation of the total current under illumination was also performed.

Key words: germaniumphotodiodesdefectsdark currentsimulation

Abstract: The influence of defects in low temperature Ge layer on electrical characteristics of p-Ge/i-Ge/n-Si and n-Ge/i-Ge/p-Ge photodiodes (PDs) was studied. Due to a two-step growth method, there are high defect densities in low-temperature buffer Ge layer. It is shown that the defects in low-temperature Ge layer change the band diagrams and the distribution of electric field, leading to the increase of the total dark current for p-Ge/i-Ge/n-Si PDs, whereas these defects have no influence on the dark current for n-Ge/i-Ge/p-Ge PDs. As a complement, a three-dimensional simulation of the total current under illumination was also performed.

Key words: germaniumphotodiodesdefectsdark currentsimulation



References:

[1]

Feng S Z, Liao S R, Dong P. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on insulator waveguide[J]. Appl Phys Lett, 2009, 95(26): 261105. doi: 10.1063/1.3279129

[2]

Colace L, Masini G, Assanto G. Ge-on-Si approaches to the detection of near-infrared light[J]. IEEE J Quantum Electron, 2002, 35(12): 1843.

[3]

Kang Y, Liu H D, Morse M. Monolithic germanium/silicon avalanche PDs with 340 GHz gain-bandwidth product[J]. Nat Photonics, 2009, 3: 59. doi: 10.1038/nphoton.2008.247

[4]

Kanbe H, Miyaji M, Ito T. Ge/Si heterojunction photodiodes fabricated by low temperature wafer bonding[J]. Appl Phys Express, 2008, 1(7): 072301.

[5]

Cheng B W, Xue H Y, Hu D. Low threading-dislocation-density Ge film on Si grown on a pitting Ge buffer layer[J]. 5th IEEE International Conference on Group Ⅳ Photonics, 2008: 140.

[6]

Yu H Y, Park J H, Okyay A K. Selective-area high-quality germanium growth for monolithic integrated optoelectronics[J]. IEEE Electron Device Lett, 2012, 33(4): 579. doi: 10.1109/LED.2011.2181814

[7]

PGrillot P N, Ringel S A. Minority-and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition[J]. J Appl Phys, 1995, 77(2): 676. doi: 10.1063/1.359054

[8]

Giovane L M, Luan H C, Agarwal A M. Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers[J]. Appl Phys Lett, 2001, 78(4): 541. doi: 10.1063/1.1341230

[9]

Ang K W, Ng J W, Lo G Q. The impact of field-enhanced band-traps-band tunneling on the dark current generation in Germanium[J]. Appl Phys Lett, 2009, 94(22): 223515. doi: 10.1063/1.3151913

[10]

Tsipas P, Dimoulas A. Modeling of negatively charged states at the Ge surface and interface[J]. Appl Phys Lett, 2009, 94(1): 012114. doi: 10.1063/1.3068497

[11]

Kuzum D, Martens K, Krishnamohan T. Characteristics of surface states and charge neutrality level in Ge[J]. Appl Phys Lett, 2009, 95: 252101. doi: 10.1063/1.3270529

[12]

Wang X L, Xiang J J, Wang W W. Investigation on the dominant key to achieve superior Ge surface passivation by GeOx based on the ozone oxidation[J]. Appl Surf Sci, 2015, 357: 1857. doi: 10.1016/j.apsusc.2015.09.084

[13]

Wang C, Li C, Wei J B. High performance Ge p-n photodiode achieved with pre-annealing and excimer laser annealing[J]. IEEE Photonics Technol Lett, 2015, 27(14): 1485. doi: 10.1109/LPT.2015.2426016

[14]

Selberherr S. Analysis and simulation of semiconductor devices. New York: Springer-Verlag, 1984

[15]

Simmons J G, Taylor G W. Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps[J]. Phys Rev B, 1971, 4(2): 502. doi: 10.1103/PhysRevB.4.502

[16]

White W T, Dease C G, Pocha M D. Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension[J]. IEEE Trans Electron Devices, 1990, 37: 2532. doi: 10.1109/16.64530

[17]

Yang J H, Wei Y, Cai X Y. The effects of threading dislocations and tensile strain in Ge/Si photodetector[J]. Microelectron Int, 2010, 27(2): 113. doi: 10.1108/13565361011034803

[18]

Loo R, Wang G, Souriau L. High quality Ge virtual substrates on Si wafers with standard STI patterning[J]. J Electrochem Soc, 2010, 164(1): H13.

[19]

Zistl C, Sieleman R, Hasslein H. DLTS combined with perturbed angular correlation (PAC) on radioactive In-111 atoms in Ge[J]. Mater Sci Forum, 1997, 258-263: 53. doi: 10.4028/www.scientific.net/MSF.258-263

[20]

Spiewak P, Vanhellemont J, Sueoka K. First principles calculations of the formation energy and deep levels associated with the neutral and charged vacancy in germanium[J]. J Appl Phys, 2008, 103(8): 086103. doi: 10.1063/1.2907730

[21]

Tahini H, Chroneos A, Grimes R W. Diffusion of E centers in germanium predicted using GGA+U approach[J]. Appl Phys Lett, 2011, 99(7): 072112. doi: 10.1063/1.3625939

[22]

Shah V A, Dobbie A, Myronov M. Effect of layer thickness on structural quality of Ge epilayers grown directly on Si (001)[J]. Thin Solid Films, 2011, 519(22): 7911. doi: 10.1016/j.tsf.2011.06.022

[23]

Chroneos A, Bracht H, Grimes R W. Vacancy-mediated dopant diffusion activation enthalpies for germanium[J]. Appl Phys Lett, 2008, 92(17): 172103. doi: 10.1063/1.2918842

[24]

Brotzmann S, Bracht H. Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium[J]. J Appl Phys, 2008, 103(3): 033508. doi: 10.1063/1.2837103

[25]

Logan D F, Jessop P E, Knights A P. modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors[J]. J Lightw Technol, 2009, 27(7): 930. doi: 10.1109/JLT.2008.927752

[26]

Li C, Xue C L, Li Y M. High performance silicon waveguide germanium photodetector[J]. Chin Phys B, 2015, 24(3): 038502. doi: 10.1088/1674-1056/24/3/038502

[1]

Feng S Z, Liao S R, Dong P. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on insulator waveguide[J]. Appl Phys Lett, 2009, 95(26): 261105. doi: 10.1063/1.3279129

[2]

Colace L, Masini G, Assanto G. Ge-on-Si approaches to the detection of near-infrared light[J]. IEEE J Quantum Electron, 2002, 35(12): 1843.

[3]

Kang Y, Liu H D, Morse M. Monolithic germanium/silicon avalanche PDs with 340 GHz gain-bandwidth product[J]. Nat Photonics, 2009, 3: 59. doi: 10.1038/nphoton.2008.247

[4]

Kanbe H, Miyaji M, Ito T. Ge/Si heterojunction photodiodes fabricated by low temperature wafer bonding[J]. Appl Phys Express, 2008, 1(7): 072301.

[5]

Cheng B W, Xue H Y, Hu D. Low threading-dislocation-density Ge film on Si grown on a pitting Ge buffer layer[J]. 5th IEEE International Conference on Group Ⅳ Photonics, 2008: 140.

[6]

Yu H Y, Park J H, Okyay A K. Selective-area high-quality germanium growth for monolithic integrated optoelectronics[J]. IEEE Electron Device Lett, 2012, 33(4): 579. doi: 10.1109/LED.2011.2181814

[7]

PGrillot P N, Ringel S A. Minority-and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition[J]. J Appl Phys, 1995, 77(2): 676. doi: 10.1063/1.359054

[8]

Giovane L M, Luan H C, Agarwal A M. Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers[J]. Appl Phys Lett, 2001, 78(4): 541. doi: 10.1063/1.1341230

[9]

Ang K W, Ng J W, Lo G Q. The impact of field-enhanced band-traps-band tunneling on the dark current generation in Germanium[J]. Appl Phys Lett, 2009, 94(22): 223515. doi: 10.1063/1.3151913

[10]

Tsipas P, Dimoulas A. Modeling of negatively charged states at the Ge surface and interface[J]. Appl Phys Lett, 2009, 94(1): 012114. doi: 10.1063/1.3068497

[11]

Kuzum D, Martens K, Krishnamohan T. Characteristics of surface states and charge neutrality level in Ge[J]. Appl Phys Lett, 2009, 95: 252101. doi: 10.1063/1.3270529

[12]

Wang X L, Xiang J J, Wang W W. Investigation on the dominant key to achieve superior Ge surface passivation by GeOx based on the ozone oxidation[J]. Appl Surf Sci, 2015, 357: 1857. doi: 10.1016/j.apsusc.2015.09.084

[13]

Wang C, Li C, Wei J B. High performance Ge p-n photodiode achieved with pre-annealing and excimer laser annealing[J]. IEEE Photonics Technol Lett, 2015, 27(14): 1485. doi: 10.1109/LPT.2015.2426016

[14]

Selberherr S. Analysis and simulation of semiconductor devices. New York: Springer-Verlag, 1984

[15]

Simmons J G, Taylor G W. Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps[J]. Phys Rev B, 1971, 4(2): 502. doi: 10.1103/PhysRevB.4.502

[16]

White W T, Dease C G, Pocha M D. Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension[J]. IEEE Trans Electron Devices, 1990, 37: 2532. doi: 10.1109/16.64530

[17]

Yang J H, Wei Y, Cai X Y. The effects of threading dislocations and tensile strain in Ge/Si photodetector[J]. Microelectron Int, 2010, 27(2): 113. doi: 10.1108/13565361011034803

[18]

Loo R, Wang G, Souriau L. High quality Ge virtual substrates on Si wafers with standard STI patterning[J]. J Electrochem Soc, 2010, 164(1): H13.

[19]

Zistl C, Sieleman R, Hasslein H. DLTS combined with perturbed angular correlation (PAC) on radioactive In-111 atoms in Ge[J]. Mater Sci Forum, 1997, 258-263: 53. doi: 10.4028/www.scientific.net/MSF.258-263

[20]

Spiewak P, Vanhellemont J, Sueoka K. First principles calculations of the formation energy and deep levels associated with the neutral and charged vacancy in germanium[J]. J Appl Phys, 2008, 103(8): 086103. doi: 10.1063/1.2907730

[21]

Tahini H, Chroneos A, Grimes R W. Diffusion of E centers in germanium predicted using GGA+U approach[J]. Appl Phys Lett, 2011, 99(7): 072112. doi: 10.1063/1.3625939

[22]

Shah V A, Dobbie A, Myronov M. Effect of layer thickness on structural quality of Ge epilayers grown directly on Si (001)[J]. Thin Solid Films, 2011, 519(22): 7911. doi: 10.1016/j.tsf.2011.06.022

[23]

Chroneos A, Bracht H, Grimes R W. Vacancy-mediated dopant diffusion activation enthalpies for germanium[J]. Appl Phys Lett, 2008, 92(17): 172103. doi: 10.1063/1.2918842

[24]

Brotzmann S, Bracht H. Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium[J]. J Appl Phys, 2008, 103(3): 033508. doi: 10.1063/1.2837103

[25]

Logan D F, Jessop P E, Knights A P. modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors[J]. J Lightw Technol, 2009, 27(7): 930. doi: 10.1109/JLT.2008.927752

[26]

Li C, Xue C L, Li Y M. High performance silicon waveguide germanium photodetector[J]. Chin Phys B, 2015, 24(3): 038502. doi: 10.1088/1674-1056/24/3/038502

[1]

EngSiew Kang, S Anwar, M T Ahmadi, Razali Ismail. The impact of germanium in strained Si/relaxed Si1-xGex on carrier performance in non-degenerate and degenerate regimes. J. Semicond., 2013, 34(6): 062001. doi: 10.1088/1674-4926/34/6/062001

[2]

Yan Liu, Jing Yan, Hongjuan Wang, Genquan Han. Temperature dependent IDS-VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate. J. Semicond., 2014, 35(2): 024001. doi: 10.1088/1674-4926/35/2/024001

[3]

Jiang Huihua, Yang Deren, Tian Daxi, Ma Xiangyang, Li Liben, Que Duanlin. Effects of Germanium on Oxygen Precipitation in Heavily Boron-Doped Czochralski Silicon. J. Semicond., 2005, 26(11): 2107.

[4]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[5]

Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons. J. Semicond., 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002

[6]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

[7]

Yi Pang, Xiang Li, Baiqin Zhao. Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode. J. Semicond., 2016, 37(8): 084007. doi: 10.1088/1674-4926/37/8/084007

[8]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[9]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[10]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[11]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[12]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[13]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[14]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[15]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[16]

Guifeng Chen, Mengxue Wang, Wenxian Yang, Ming Tan, Yuanyuan Wu, Pan Dai, Yuyang Huang, Shulong Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors. J. Semicond., 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004

[17]

Liu Wenbao, Sun Xian, Wang Xiaolan, Zhang Shuang, Liu Zongshun, Zhao Degang, Yang Hui. Characteristics of Metal-Semiconductor-Metal Photodetectors Based on GaN. J. Semicond., 2007, 28(S1): 588.

[18]

Yuanfu Zhao, Liyan Liu, Xiaohui Liu, Xiaofeng Jin, Xiang Li. Radiation hardened design and analysis of radiation effect for scientific CMOS image sensor. J. Semicond., 2015, 36(11): 114007. doi: 10.1088/1674-4926/36/11/114007

[19]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[20]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

Search

Advanced Search >>

GET CITATION

X H Yi, Z W Huang, G Y Lin, C Li, S Y Chen, W Huang, J Li, J Y Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes[J]. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001.

Export: BibTex EndNote

Article Metrics

Article views: 692 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 12 September 2016 Manuscript revised: 17 October 2016 Online: Published: 01 April 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误