J. Semicond. > Volume 38 > Issue 4 > Article Number: 044002

Simulation of double junction In0.46Ga0.54N/Si tandem solar cell

M. Benaicha 1, 2, , L. Dehimi 1, 2, and Nouredine Sengouga 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A comprehensive study of high efficiency In0.46Ga0.54N/Si tandem solar cell is presented. A tunnel junction (TJ) was needed to interconnect the top and bottom sub-cells. Two TJ designs, integrated within this tandem: GaAs (n+)/GaAs (p+) and In0.5Ga0.5N (n+)/Si (p+) were considered. Simulations of GaAs (n+)/GaAs (p+) and In0.5Ga0.5N (n+)/Si (p+) TJ I-V characteristics were studied for integration into the proposed tandem solar cell. A comparison of the simulated solar cell I-V characteristics under 1 sun AM1.5 spectrum was discussed in terms of short circuit current density (Jsc), open circuit voltage (VOC), fill factor (FF) and efficiency (η) for both tunnel junction designs. Using GaAs (n+)/GaAs (p+) tunnel junction, the obtained values of Jsc=21.74 mA/cm2, VOC=1.81 V, FF=0.87 and η=34.28%, whereas the solar cell with the In0.5Ga0.5N/Si tunnel junction reported values of Jsc=21.92 mA/cm2, VOC=1.81 V, FF=0.88 and η=35.01%. The results found that required thicknesses for GaAs (n+)/GaAs (p+) and In0.5Ga0.5N (n+)/Si (p+) tunnel junctions are around 20 nm, the total thickness of the top InGaN can be very small due to its high optical absorption coefficient and the use of a relatively thick bottom cell is necessary to increase the conversion efficiency.

Key words: InGaN/Sitandem solar cellstunnel junctionssimulation

Abstract: A comprehensive study of high efficiency In0.46Ga0.54N/Si tandem solar cell is presented. A tunnel junction (TJ) was needed to interconnect the top and bottom sub-cells. Two TJ designs, integrated within this tandem: GaAs (n+)/GaAs (p+) and In0.5Ga0.5N (n+)/Si (p+) were considered. Simulations of GaAs (n+)/GaAs (p+) and In0.5Ga0.5N (n+)/Si (p+) TJ I-V characteristics were studied for integration into the proposed tandem solar cell. A comparison of the simulated solar cell I-V characteristics under 1 sun AM1.5 spectrum was discussed in terms of short circuit current density (Jsc), open circuit voltage (VOC), fill factor (FF) and efficiency (η) for both tunnel junction designs. Using GaAs (n+)/GaAs (p+) tunnel junction, the obtained values of Jsc=21.74 mA/cm2, VOC=1.81 V, FF=0.87 and η=34.28%, whereas the solar cell with the In0.5Ga0.5N/Si tunnel junction reported values of Jsc=21.92 mA/cm2, VOC=1.81 V, FF=0.88 and η=35.01%. The results found that required thicknesses for GaAs (n+)/GaAs (p+) and In0.5Ga0.5N (n+)/Si (p+) tunnel junctions are around 20 nm, the total thickness of the top InGaN can be very small due to its high optical absorption coefficient and the use of a relatively thick bottom cell is necessary to increase the conversion efficiency.

Key words: InGaN/Sitandem solar cellstunnel junctionssimulation



References:

[1]

Feng S W, Lai C M, Tu L W. Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells[J]. Nanoscale Res Lett, 2014, 9: 652. doi: 10.1186/1556-276X-9-652

[2]

Jani O, Ferguson I, Honsberg C. Design and characterization of GaN/InGaN solar cells[J]. Appl Phys Lett, 2007, 91: 132117.

[3]

Nanishi Y, Saito Y, Yamaguchi T. RF-molecular beam epitaxy growth and properties of InN and related alloys[J]. Jpn J Appl Phys, Part 1, 2003, 42: 2549. doi: 10.1143/JJAP.42.2549

[4]

Zheng Y D, Mihara A, Yamamoto A. Analysis of InxGa1-xN/Si p-n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges[J]. J App Phys, 2013, 103: 153509.

[5]

Li Z D, Xiao H L, Wang X L. Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell[J]. Physica B, 2013, 414: 110. doi: 10.1016/j.physb.2013.01.026

[6]

Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells[J]. J Appl Phys, 2008, 104: 024507.

[7]

Brown G F, Ager J W, Walukiewicz W. Finite element simulations of compositionally graded InGaN solar cells[J]. Sol Energy Mater Sol Cells, 2010, 94: 478. doi: 10.1016/j.solmat.2009.11.010

[8]

Michael S, Lavery J. 23rd European Photovoltaic Solar Energy Conference, 1-5 September 2008, Valencia, Spain

[9]

Zhao Y M, Dong J R, Li K L. InGaAsP/InGaAs tandem photovoltaic devices for four-junction solar cells[J]. J Semicond, 2015, 36(4): 044011.

[10]

Wang H X, Zheng X H, Gan X Y. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell[J]. J Semicond, 2016, 37(1): 014004.

[11]

Cao K W, Liu T, Liu J M. Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell[J]. J Semicond, 2016, 37(6): 063002. doi: 10.1088/1674-4926/37/6/063002

[12]

Wu J, Walukiewicz W. Band gaps of InN and group Ⅲ nitride alloys[J]. Superlattice Microstruct, 2003, 34: 63.

[13]

Zhang X B, Wang X L, Xiao H L. Simulation of In0.56Ga0.35N single-junction solar cell[J]. J Phys D, 2007, 40: 7335.

[14]

Levinshtein M E, Rumyantsev S L, Shur M S. Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, 2001

[15]

Inushima T, Higashiwaki M, Matsui T. Optical properties of Si-doped InN grown on sapphire (0001)[J]. Phys Rev B, 2003, 68: 1.

[16]

Levinshtein M E, Rumyantsev S L, Shur M S. Properties of advanced semiconductor materials[J]. Wiley Chichester, UK, 2001: 1.

[17]

Mnatsakanov T T, Levinshtein M E, Pmortseva L I. Carrier mobility model for GaN[J]. Solid-State Electron, 2003, 47: 111.

[18]

Hsu L, Jones R E, Li S X. Electron mobility in InN and Ⅲ-N alloys[J]. J Appl Phys, 2007, 102: 073705.

[19]

Adachi S. The handbook on optical constants of semiconductors in tables and figures. World Scientific, 2012

[1]

Feng S W, Lai C M, Tu L W. Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells[J]. Nanoscale Res Lett, 2014, 9: 652. doi: 10.1186/1556-276X-9-652

[2]

Jani O, Ferguson I, Honsberg C. Design and characterization of GaN/InGaN solar cells[J]. Appl Phys Lett, 2007, 91: 132117.

[3]

Nanishi Y, Saito Y, Yamaguchi T. RF-molecular beam epitaxy growth and properties of InN and related alloys[J]. Jpn J Appl Phys, Part 1, 2003, 42: 2549. doi: 10.1143/JJAP.42.2549

[4]

Zheng Y D, Mihara A, Yamamoto A. Analysis of InxGa1-xN/Si p-n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges[J]. J App Phys, 2013, 103: 153509.

[5]

Li Z D, Xiao H L, Wang X L. Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell[J]. Physica B, 2013, 414: 110. doi: 10.1016/j.physb.2013.01.026

[6]

Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells[J]. J Appl Phys, 2008, 104: 024507.

[7]

Brown G F, Ager J W, Walukiewicz W. Finite element simulations of compositionally graded InGaN solar cells[J]. Sol Energy Mater Sol Cells, 2010, 94: 478. doi: 10.1016/j.solmat.2009.11.010

[8]

Michael S, Lavery J. 23rd European Photovoltaic Solar Energy Conference, 1-5 September 2008, Valencia, Spain

[9]

Zhao Y M, Dong J R, Li K L. InGaAsP/InGaAs tandem photovoltaic devices for four-junction solar cells[J]. J Semicond, 2015, 36(4): 044011.

[10]

Wang H X, Zheng X H, Gan X Y. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell[J]. J Semicond, 2016, 37(1): 014004.

[11]

Cao K W, Liu T, Liu J M. Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell[J]. J Semicond, 2016, 37(6): 063002. doi: 10.1088/1674-4926/37/6/063002

[12]

Wu J, Walukiewicz W. Band gaps of InN and group Ⅲ nitride alloys[J]. Superlattice Microstruct, 2003, 34: 63.

[13]

Zhang X B, Wang X L, Xiao H L. Simulation of In0.56Ga0.35N single-junction solar cell[J]. J Phys D, 2007, 40: 7335.

[14]

Levinshtein M E, Rumyantsev S L, Shur M S. Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, 2001

[15]

Inushima T, Higashiwaki M, Matsui T. Optical properties of Si-doped InN grown on sapphire (0001)[J]. Phys Rev B, 2003, 68: 1.

[16]

Levinshtein M E, Rumyantsev S L, Shur M S. Properties of advanced semiconductor materials[J]. Wiley Chichester, UK, 2001: 1.

[17]

Mnatsakanov T T, Levinshtein M E, Pmortseva L I. Carrier mobility model for GaN[J]. Solid-State Electron, 2003, 47: 111.

[18]

Hsu L, Jones R E, Li S X. Electron mobility in InN and Ⅲ-N alloys[J]. J Appl Phys, 2007, 102: 073705.

[19]

Adachi S. The handbook on optical constants of semiconductors in tables and figures. World Scientific, 2012

[1]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[2]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[3]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

[4]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[5]

Cui Min, Chen Nuofu, Yang Xiaoli, Zhang Han. Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell. J. Semicond., 2012, 33(2): 024006. doi: 10.1088/1674-4926/33/2/024006

[6]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[7]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[8]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[9]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[10]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[11]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[12]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[13]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[14]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[15]

Lü Siyu, Qu Xiaosheng. AlGaAs/GaAs tunnel junctions in a 4-J tandem solar cell. J. Semicond., 2011, 32(11): 112003. doi: 10.1088/1674-4926/32/11/112003

[16]

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

[17]

Changyong Zheng, Wei Zhang, Tailong Xu, Yuehua Dai, Junning Chen. A compact model for single material double work function gate MOSFET. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006

[18]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[19]

Liu Xueqiang, Zhang Tong, Wang Lijie, Xia Zhiqiang, Li Mingyou, Liu Shiyong. A Testing Method on a Thin Film Transistor Array for Active Matrix Organic Emitting Diode. J. Semicond., 2007, 28(7): 1161.

[20]

Xu Shengrui, Hao Yue, Feng Hui, Li Dechang, Zhang Jincheng. A Novel Double RESURF TG-LDMOS Device Structure. J. Semicond., 2007, 28(2): 232.

Search

Advanced Search >>

GET CITATION

M Benaicha, L Dehimi, N Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell[J]. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002.

Export: BibTex EndNote

Article Metrics

Article views: 722 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 11 October 2016 Manuscript revised: 03 November 2016 Online: Published: 01 April 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误