J. Semicond. > Volume 38 > Issue 7 > Article Number: 071002

Resistive random access memory and its applications in storage and nonvolatile logic

Dongbin Zhu , Yi Li , Wensheng Shen , Zheng Zhou , Lifeng Liu , and Xing Zhang ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The resistive random access memory (RRAM) device has been widely studied due to its excellent memory characteristics and great application potential in different fields. In this paper, resistive switching materials, switching mechanism, and memory characteristics of RRAM are discussed. Recent research progress of RRAM in high-density storage and nonvolatile logic application are addressed. Technological trends are also discussed.

Key words: RRAMmemorynonvolatile logicmetal-oxideresistive switching

Abstract: The resistive random access memory (RRAM) device has been widely studied due to its excellent memory characteristics and great application potential in different fields. In this paper, resistive switching materials, switching mechanism, and memory characteristics of RRAM are discussed. Recent research progress of RRAM in high-density storage and nonvolatile logic application are addressed. Technological trends are also discussed.

Key words: RRAMmemorynonvolatile logicmetal-oxideresistive switching



References:

[1]

Freitas R F, Wilcke W W. Storage-class memory: the next storage system technology[J]. IBM J Res Dev, 2008, 52: 439. doi: 10.1147/rd.524.0439

[2]

Lelmini D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling[J]. Semcond Sci Technol, 2016, 31: 063002. doi: 10.1088/0268-1242/31/6/063002

[3]

Borghetti J, Snider G S, Kuekes P J. Memristive switches enable 'stateful' logic operations via material implication[J]. Nature, 2010, 464: 873. doi: 10.1038/nature08940

[4]

Wong H S P, Salahuddin S. Memory leads the way to better computing[J]. Nat Nanotechnol, 2015, 10: 191. doi: 10.1038/nnano.2015.29

[5]

Li H, Gao B, Chen Z. A learnable parallel processing architecture towards unity of memory and computing[J]. Sci Res, 2015, 5: 13330.

[6]

Yang J J, Strukov D B, Stewart D R. Memristive devices for computing[J]. Nat Nano, 2013, 8: 13.

[7]

Pan F, Gao S, Chen C. Recent progress in resistive random access memories: materials, switching mechanisms, and performance[J]. Mater Sci Eng R, 2014, 83: 1. doi: 10.1016/j.mser.2014.06.002

[8]

Salvo B D, Gerardi C, Schaijk R V. Performance and reliability features of advanced nonvolatile memories based on discrete traps[J]. IEEE Trans Device Mater Rel, 2004, 4: 77.

[9]

Ielmimi D. Reliability issues and modeling of flash and post-flash memory[J]. Microelectron Eng, 2009, 86: 1870. doi: 10.1016/j.mee.2009.03.054

[10]

Gallagher W J, Parkin S S P. Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip[J]. IBM J Res Dev, 2006, 50: 5. doi: 10.1147/rd.501.0005

[11]

Kawahara T, Ito K, Takemura R. Spin-transfer torque RAM technology: review and prospect[J]. Microelectron Rel, 2012, 52: 613. doi: 10.1016/j.microrel.2011.09.028

[12]

Meena J S, Sze S M, Chand U. Overview of emerging nonvolatile memory technologies[J]. Nanoscale Res Lett, 2014, 9: 526. doi: 10.1186/1556-276X-9-526

[13]

Raoux S, Burr G W, Breitwisch M J. Phase-change random access memory: a scalable technology[J]. IBM J Res Dev, 2008, 52: 465. doi: 10.1147/rd.524.0465

[14]

Wong H S P, Lee H Y, Yu S M. Metal-oxide RRAM[J]. Proc IEEE, 2012, 1951: 1970.

[15]

Tehrani S, Engel B, Slaughter J M. Recent developments in magnetic tunnel junction MRAM[J]. IEEE Trans Magn, 2000, 36: 2752. doi: 10.1109/20.908581

[16]

Kawahara T, Ito K, Takemura R. Spin-transfer torque RAM technology: review and prospect[J]. Microelectron Reliab, 2012, 52: 613. doi: 10.1016/j.microrel.2011.09.028

[17]

Wong H S P, Raoux S, Kim S. Phase change memory[J]. Proc IEEE, 2010, 98: 2201. doi: 10.1109/JPROC.2010.2070050

[18]

Ye C, Wu J J, He G. Physical mechanism and performance factors of metal oxide based resistive switching memory: a review[J]. J Mater Sci Technol, 2016, 32: 1.

[19]

Balatti S, Ambrogio S, Wang Z Q. Voltage-controlled cycling endurance of HfOx-based resistive-switching memory (RRAM)[J]. IEEE Trans Electron Devices, 2015, 62: 3365. doi: 10.1109/TED.2015.2463104

[20]

Hou Y, Celano U, Goux L. Sub-10 nm low current resistive switching behavior in hafnium oxide stack[J]. Appl Phys Lett, 2016, 108: 123106. doi: 10.1063/1.4944841

[21]

Hickmott T W. Low-frequency negative resistance in thin anodic oxide films[J]. J Appl Phys, 1962, 33: 2669. doi: 10.1063/1.1702530

[22]

Asamitsu A, Tomioka Y, Kuwahara H. Current switching of resistive states in magnetoresistive manganites[J]. Nature, 1997, 50: 52.

[23]

Beck A, Bednorz J G, Gerber C. Reproducible switching effect in thin oxide films for memory applications[J]. Appl Phys Lett, 2000, 139: 141.

[24]

Watanabe Y, Bednorz J G, Bietsch A. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals[J]. Appl Phys Lett, 2001, 3738: 3740.

[25]

Zhang H W, Liu L F, Gao B. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach[J]. Appl Phys Lett, 2011, 98.

[26]

Zhang F F, Li X, Gao B. Complementary metal oxide semiconductor compatible Hf-based resistive random access memory with ultralow switching current/power[J]. Jpn J Appl Phys, 2012, 51: 04D.

[27]

Liu L F, Yu D, Chen B. Improvement of reliability characteristics of TiO2-based resistive switching memory device with an inserted ZnO layer[J]. Jpn J Appl Phys, 2012, 51: 101101.

[28]

Bousoulas P, Stathopoulos S, Tsialoukis D. Low-power and highly uniform 3-b multilevel switching in forming free TiO2-x-based RRAM with embedded Pt nanocrystals[J]. IEEE Electron Device Lett, 2016, 874: 877.

[29]

Liu L F, Hou Y, Chen B. Improved unipolar resistive switching characteristics of mixed-NiOx/NiOy-film-based resistive switching memory devices[J]. Jpn J Appl Phys, 2015, 54: 094201. doi: 10.7567/JJAP.54.094201

[30]

Zhang H W, Gao B, Sun B. Ionic doping effect in ZrO2 resistive switching memory[J]. Appl Phys Lett, 2010, 96: 123502. doi: 10.1063/1.3364130

[31]

Sun B, Liu L F, Xu N. The effect of current compliance on the resistive switching behaviors in TiN/ZrO2/Pt memory device[J]. Jpn J Appl Phys, 2009, 48: 04C.

[32]

Prakash A, Park J, Song J. Demonstration of low power 3-bit multilevel cell characteristics in a TaOx-based RRAM by stack engineering[J]. IEEE Electron Device Lett, 2015, 32: 34.

[33]

Zhao Y D, Huang P, Chen Z. Modeling and optimization of bilayered TaOx RRAM based on defect evolution and phase transition effects[J]. IEEE Electron Device Lett, 2016, 63: 1524. doi: 10.1109/TED.2016.2532470

[34]

Xu N, Liu L F, Sun X. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories[J]. Appl Phys Lett, 2008, 92: 232112. doi: 10.1063/1.2945278

[35]

Tran X A, Zhu W, Liu W J. A self-rectifying AlOy bipolar RRAM with sub-50-μA set/reset current for cross-bar architecture[J]. IEEE Electron Device Lett, 2012, 33: 1402. doi: 10.1109/LED.2012.2210855

[36]

Son D I, Kim T W, Shim J H. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer[J]. Nano Lett, 2010, 10: 2441. doi: 10.1021/nl1006036

[37]

Liu L F, Yu D, Ma W J. Multilevel resistive switching in Ag/SiO2/Pt resistive switching memory device[J]. Jpn J Appl Phys, 2015, 54: 021802. doi: 10.7567/JJAP.54.021802

[38]

Kuo C C, Chen I C, Shih C C. Galvanic effect of Au--Ag electrodes for conductive bridging resistive switching memory[J]. IEEE Electron Device Lett, 2015, 36: 1321. doi: 10.1109/LED.2015.2496303

[39]

Palma G, Vianello E, Thomas O. A novel HfO2-GeS2-Ag based conductive bridge RAM for reconfigurable logic applications[J]. Solid-State Device Research Conference (ESSDERC), 2013: 264.

[40]

Ota K, Belmonte A, Chen Z. Impact of the filament morphology on the retention characteristics of Cu/Al2O3-based CBRAM devices[J]. IEDM, 2016: 556.

[41]

Bernard Y, Renard V T, Gonon P. Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2[J]. Microelect Eng, 2011, 88: 814. doi: 10.1016/j.mee.2010.06.041

[42]

Belmonte A, Egraeve D, Fantini A. Origin of the current discretization in deep reset states of an Al2O3/Cu-based conductive-bridging memory, and impact on state level and variability[J]. Appl Phys Lett, 2014, 104: 233508. doi: 10.1063/1.4883856

[43]

Waser R, Aono M. Nanoionics-based resistive switching memories[J]. Nat Mater, 2007, 6: 833. doi: 10.1038/nmat2023

[44]

Gao B, Yu S, Xu N. Oxide-based RRAM switching mechanism: a new ion-transport-recombination model[J]. IEDM Tech Dig, 2008: 4796751.

[45]

Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films[J]. Appl Phys Lett, 2008, 92: 222106. doi: 10.1063/1.2931087

[46]

Celano Y, Chen Y Y, Wouters D J. Filament observation in metal-oxide resistive switching devices[J]. Appl Phys Lett, 2013, 102: 121602. doi: 10.1063/1.4798525

[47]

Kim D C, Seo S, Ahn S E. Electrical observations of filamentary conductions for the resistive memory switching in NiO films[J]. Appl Phys Lett, 2006, 88: 202102. doi: 10.1063/1.2204649

[48]

Guan W, Long S, Liu Q. Nonpolar nonvolatile resistive switching in Cu doped ZrO2[J]. IEEE Electron Device Lett, 2008, 29: 434. doi: 10.1109/LED.2008.919602

[49]

Rozenberg M J, Inoue I H, Sanchez M J. Nonvolatile memory with multilevel switching: a basic model[J]. Phys Rev Lett, 2004, 92: 178302. doi: 10.1103/PhysRevLett.92.178302

[50]

Fors R, Khartsev S I, Grishin A M. Giant resistance switching in metal--insulator--manganite junctions: evidence for Mott transition[J]. Phys Rev B, 2005, 71: 045305. doi: 10.1103/PhysRevB.71.045305

[51]

Tsymbal E Y, Kohlstedt H. Tunneling across a ferroelectric[J]. Science, 2006, 313: 181. doi: 10.1126/science.1126230

[52]

Gao B, Sun B, Zhang H W. Unified physical model of bipolar oxide-based resistive switching memory[J]. IEEE Electron Device Lett, 2009, 30: 1326. doi: 10.1109/LED.2009.2032308

[53]

Gao B, Kang J F, Chen Y S. Oxide-based RRAM: unified microscopic principle for both unipolar and bipolar switching[J]. IEDM Tech Dig, 2011: 17.

[54]

Huang P, Liu X Y, Li W H. A physical based analytic model of RRAM operation for circuit simulation[J]. IEDM Tech Dig, 2012: 26.

[55]

Huang P, Liu X Y, Chen B. A physics-based compact model of metal--oxide-based RRAM DC and AC operations[J]. IEEE Trans Electron Devices, 2013, 4090: 4097.

[56]

Li H T, Huang P, Gao B. A SPICE model of resistive random access memory for large-scale memory array simulation[J]. IEEE Electron Device Lett, 2014, 211: 21.

[57]

Gao B, Zhang H W, Yu S M. Oxide-based RRAM: uniformity improvement using a new material-oriented methodology[J]. VLSI Technol, 2009, 30: 31.

[58]

Valov I, Linn E, Tappertzhofen S. Nanobatteries in redox-based resistive switches require extension of memristor theory[J]. Nat Commun, 2013, 4: 1771. doi: 10.1038/ncomms2784

[59]

Kim S, Choi S H, Lu W. Comprehensive physical model of dynamic resistive switching in an oxide memristor[J]. ACS Nano, 2014, 8: 2369. doi: 10.1021/nn405827t

[60]

Hubbard W A, Kerelsky A, Jasmin G. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching[J]. Nano Lett, 2015, 15: 3983. doi: 10.1021/acs.nanolett.5b00901

[61]

Liu Q, Sun J, Lv H B. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM[J]. Adv Mater, 2012, 24: 1844. doi: 10.1002/adma.v24.14

[62]

Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films[J]. Appl Phys Lett, 2008, 22: 2106.

[63]

Celano U, Chen Y Y, Wouters D J. Filament observation in metal--oxide resistive switching devices[J]. Appl Phys Lett, 2013, 102: 121602. doi: 10.1063/1.4798525

[64]

Celano U, Goux L, Degraeve R. Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory[J]. Nano Lett, 2015, 15(12): 7970. doi: 10.1021/acs.nanolett.5b03078

[65]

Park G S, Kim Y B, Park Y S. In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure[J]. Nat Commun, 2013, 4: 2382.

[66]

Zhu X J, Su W J, Liu Y W. Observation of conductance quantization in oxide-based resistive switching memory[J]. Adv Mater, 2012, 24: 3941. doi: 10.1002/adma.v24.29

[67]

Li C, Gao B, Yao Y. Direct observations of nano lament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies[J]. Adv Mater, 2017, 29: 1602976. doi: 10.1002/adma.201602976

[68]

Yang U C, Gao P, Gaba S. Observation of conducting lament growth in nanoscale resistive memories[J]. Nat Commun, 2012, 3: 732. doi: 10.1038/ncomms1737

[69]

Celanoa U, Gouxa L, Opsomer K. Scanning probe microscopy as a scalpel to probe filament formation in conductive bridging memory devices[J]. Microelectron Eng, 2014, 120: 67. doi: 10.1016/j.mee.2013.06.001

[70]

Celano U, Goux L, Belmonte A. Understanding the dual nature of the filament dissolution in conductive bridging devices[J]. J Phys Chem Lett, 2015, 6: 1919. doi: 10.1021/acs.jpclett.5b00633

[71]

Sun H T, Liu Q, Li C F. Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology[J]. Adv Fun Mater, 2014, 5679: 5686.

[72]

Lee H Y, Chen P S, Wu Y Y. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM[J]. IEDM Tech Dig, 2008: 297.

[73]

Goux L, Sankaran K, Kar G. Field-driven ultrafast sub-ns programming in W/Al2O3/Ti/CuTe-based 1T1R CBRAM system[J]. Proc Symp VLSI Technol, 2012: 69.

[74]

Chen C Y, Goux L, Fantini A. Doped Gd--O based RRAM for embedded application[J]. IMW, 2016, 1: 4.

[75]

Piccolboni G, Parise M, Molas G. Vertical CBRAM (V-CBRAM): from experimental data to design perspectives[J]. IEEE International Memory Workshop (IMW), 2016.

[76]

Bousoulas P, Asenov P, Tsoukalas D. Physical modelling of the SET/RESET characteristics and analog properties of TiOx/HfO2-x/TiOx-based RRAM devices[J]. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2016: 249.

[77]

Woo J, Belmonte A, Redolfi A. Introduction of WO3 layer in a Cu-based Al2O3 conductive bridge RAM system for robust cycling and large memory window[J]. IEEE J Electron Devices, 2016, 4: 163. doi: 10.1109/JEDS.2016.2526632

[78]

Hsu C W, Wang I T, Lo C L. Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 10E12 cycles for 3D high-density storage-class memory[J]. Proc Symp VLSI Technol, 2013: 166.

[79]

Belmonte A, Kim W, Chan B T. 90 nm W/Al2O3/Ti/Cu 1T1R CBRAM cell showing low-power, fast and disturb-free operation[J]. IEEE International Memory Workshop, 2013, 26: 29.

[80]

Yang Y C, Chen C, Zeng F. Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism[J]. J Appl Phys, 2010, 107: 093701. doi: 10.1063/1.3399152

[81]

Sedghi N, Li H, Brunell F. The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM[J]. Appl Phys Lett, 2017, 110: 102902. doi: 10.1063/1.4978033

[82]

Kim W, Menzel S, Wouters D J. 3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOx/Pt-ReRAM devices[J]. IEEE Electron Device Lett, 2016, 37: 564. doi: 10.1109/LED.2016.2542879

[83]

Tsuruoka T, Hasegawa T, Terabe K. Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch[J]. Nanotech, 2012, 23: 435705. doi: 10.1088/0957-4484/23/43/435705

[84]

Deng Y, Huang P, Chen B. RRAM crossbar array with cell selection device: a device and circuit interaction study[J]. IEEE Trans Electron Devices, 2013, 60: 719. doi: 10.1109/TED.2012.2231683

[85]

Kim S, Kim H, Choi S. Numerical study of read scheme in one-selector one-resistor crossbar array[J]. Solid State Electron, 2015, 114: 8.

[86]

Lee M, Park Y, Suh D. Two series oxide resistors applicable to high speed and high density nonvolatile memory[J]. Adv Mat, 2007, 19: 3919. doi: 10.1002/(ISSN)1521-4095

[87]

Koo Y, Baek K, Hwang H. Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications[J]. Proc Symp VLSI Technol, 2016: 16322184.

[88]

Burr G W, Virwani K, Shenoy R S. Large-scale (512 kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (Miec) at 100 yield[J]. Proc Symp VLSI Technol, 2012: 41.

[89]

Lee W, Park J, Shin J. Varistor-type bidirectional switch (JMAX >>10×107A/cm2, selectivity 10E4) for 3D bipolar resistive memory arrays[J]. Proc Symp VLSI Technol, 2012: 37.

[90]

Jo S H, Kumar T, Narayanan S. 3D-stackable crossbar resistive memory based on field assisted super-linear threshold (FAST) selector[J]. IEDM Tech Dig, 2014: 6.

[91]

Kim K H, Jo S H, Gaba S. Nanoscale resistive memory with intrinsic diode characteristics and long endurance[J]. Appl Phys Lett, 2010, 96: 053106. doi: 10.1063/1.3294625

[92]

Son M, Lee J, Park J. Excellent selector characteristics of nanoscale box for high-density bipolar ReRAM applications[J]. IEEE Electron Device Lett, 2011, 32: 1579. doi: 10.1109/LED.2011.2163697

[93]

Kim S, Liu X, Park J. Ultrathin V2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications[J]. Proc Symp VLSI Technol, 2012: 155.

[94]

Aluguri R, Tseng T. Overview of selector devices for 3-D stackable cross point RRAM arrays[J]. IEEE J Electron Devices, 2016, 4: 294. doi: 10.1109/JEDS.2016.2594190

[95]

Kim W G, Lee H M, Kim B Y. NbO2-based low power and cost effective 1S1R switching for high density cross point ReRAM application[J]. Proc Symp VLSI Technol, 2014.

[96]

Koo Y, Baek K, Hwang H. Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications[J]. Proc Symp VLSI Technol, 2016: 1.

[97]

Gopalakrishnan K, Shenoy R S, Rettner C T. Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays[J]. Proc Symp VLSI Technol, 2010: 205.

[98]

Lee W, Park J, Kim S. High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector---one resistor arrays[J]. ACS Nano, 2012, 9: 8166.

[99]

Jo S H, Kumar T, Narayanan S. 3D stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector[J]. IEDM Tech Dig, 2014: 6.

[100]

Luo Q, Xu X, Liu H, et al. Cu BEOL compatible selector with high selectivity (>10×107), extremely low off-current (~pA) and high endurance (>10×1010). IEDM Tech Dig, 201: 10. 4. 1

[101]

Luo Q, Xu X, Lv H. Fully BEOL compatible TaOx-based selector with high uniformity and robust performance[J]. IEDM Tech Dig, 2016: 11.

[102]

Hudec B, Hsu C W, Wang I T. 3D resistive RAM cell design for high-density storage class memory-a review[J]. Sci Chi Inf Sci, 2016, 59: 061403. doi: 10.1007/s11432-016-5566-0

[103]

Hsieh M C, Liao Y C, Chin Y W. Ultra high density 3D via RRAM in pure 28 nm CMOS process[J]. IEDM Tech Dig, 2013: 10.

[104]

Seok J, Song S J, Yoon J H. A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view[J]. Adv Funct Mater, 2015, 24: 5316.

[105]

Chen H, Gao B, Li H T. Towards high-speed, write-disturb tolerant 3D vertical RRAM arrays[J]. Proc Symp VLSI Technol, 2014.

[106]

Deng Y X, Chen H Y, Gao B. Design and optimization methodology for 3D RRAM arrays[J]. IEDM Tech Dig, 2013: 25.

[107]

Yu S M, Chen H Y, Gao B. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture[J]. ACS Nano, 2014, 7: 320.

[108]

Li H T, Li K S, Lin C H. Four-layer 3D vertical RRAM integrated with FinFET as a versatile computing unit for brain-inspired cognitive information[J]. Proc Symp VLSI Technol, 2016.

[109]

Xu X, Luo Q, Gong T. Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling[J]. Proc Symp VLSI Technol, 2016.

[110]

Luo Q, Xu X, Liu H. Demonstration of 3D vertical RRAM with ultra low-leakage, high-selectivity and self-compliance memory cells[J]. IEDM Tech Dig, 2015: 10.

[111]

Luo Q, Xu X, Liu H. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays[J]. Nanoscale, 2016, 8: 15629. doi: 10.1039/C6NR02029A

[112]

Yu S M, Deng Y X, Gao B. Design guidelines for 3D RRAM cross-point architecture[J]. IEEE International Symposium on Circuits and Systems (ISCAS), 2014: 421.

[113]

Chen P Y, Yu S M. Impact of vertical RRAM device characteristics on 3D cross-point array design[J]. International Memory Workshop (IMW), 2014.

[114]

Chen P Y, Li Z W, Yu S M. Design tradeoffs of vertical RRAM-based 3-D cross-point array[J]. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2016, 24: 3460. doi: 10.1109/TVLSI.2016.2553123

[115]

Li Z W, Chen P Y, Liu H J. Quasi-analytical model of 3-D vertical-RRAM array architecture for MB-level design[J]. IEEE Trans Electron Devices, 2017: 99.

[116]

Adam G C, Hoskins B D, Prezioso M. 3-D memristor crossbars for analog and neuromorphic computing applications[J]. IEEE Trans Electron Devices, 2017, 312: 318.

[117]

Bai Y, Wu H Q, Wang K. Stacked 3D RRAM array with graphene/CNT as edge electrodes[J]. Sci Rep, 2015, 5: 13785. doi: 10.1038/srep13785

[118]

Bai Y, Wu H Q, Wu R. Study of multi-level characteristics for 3D vertical resistive switching memory[J]. Sci Rep, 2014, 4: 5780.

[119]

Ni L, Wang Y, Yu H. An energy-efficient matrix multiplication accelerator by distributed in-memory computing on binary RRAM crossbar[J]. ASP-DAC, 2016, 280: 285.

[120]

Li H, Chen Z, Ma W. Nonvolatile logic and in situ data transfer demonstrated in crossbar resistive RAM array[J]. IEEE Electron Device Lett, 2015, 1142: 1145.

[121]

Zhou Y X, Li Y, Xu L. Boolean logics in three steps with two anti-serially connected memristors[J]. Appl Phys Lett, 2015, 106: 233502. doi: 10.1063/1.4922344

[122]

Zhou Y X, Li Y, Su Y T. Nonvolatile reconfigurable sequential logic in HfO2 resistive random access memory array[J]. Nanoscale, 2017, 9: 6649. doi: 10.1039/C7NR00934H

[123]

Li Y, Zhou Y X, Xu L. Realization of functional complete stateful boolean logic in memristive crossbar[J]. ACS Appl Mater Interfaces, 2016, 8: 34559. doi: 10.1021/acsami.6b11465

[124]

Kang J F, Huang P, Gao B. Design and application of oxide-based resistive switching devices for novel computing architectures[J]. IEEE J Electron Devices, 2016, 307: 313.

[125]

Rosezin R, Linn E, Kugeler C. Crossbar logic using bipolar and complementary resistive switches[J]. IEEE Electron Device Lett, 2011, 32: 710. doi: 10.1109/LED.2011.2127439

[126]

Linn E, Rosezin R, Tappertzhofen S. Beyond von Neumann--logic operations inpassive crossbar arrays alongside memory operations[J]. Nanotechnology, 2012, 23: 305205. doi: 10.1088/0957-4484/23/30/305205

[127]

Breuer T, Siemon A, Linn E. A HfO2-based complementary switching crossbar Adder[J]. Adv Electron Mater, 2015, 1: 64.

[128]

Siemon A, Menzel S, Waser R. A complementary resistive switch-based crossbar array adder[J]. IEEE J Emerg Sel Top Circuits Syst, 2014, 5: 64.

[129]

Gokmen T, Vlasov Y. Acceleration of deep neural network training with resistive cross-point devices[J]. arXiv preprint arXiv, 2016, 1603: 07341.

[130]

Huang P, Kang J F, Zhao Y D. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits[J]. Adv Mater, 2016, 28: 9758. doi: 10.1002/adma.201602418

[131]

Chen Y C, Chang Y F, Wu X H. Dynamic conductance characteristics in HfOx based resistive random access memory[J]. RSC Adv, 2017, 12984: 12989.

[132]

Lim S, Yoo J, Song J. Excellent threshold switching device (IOFF~1 pA) with atom-scale metal filament for steep slope ( < 5 mV/dec), ultra low voltage (VDD = 0.25 V) FET applications[J]. IEDM, 2016: 34.

[133]

Chang K C, Zhang R, Chang T C. High performance, excellent reliability multifunctional graphene oxide doped memristor achieved by self-protective compliance current structure[J]. IEDM, 2014: 33.

[134]

Huang Y, Shen Z H, Wu Y. Amorphous ZnO based resistive random access memory[J]. RSC Adv, 2016, 17867: 17872.

[1]

Freitas R F, Wilcke W W. Storage-class memory: the next storage system technology[J]. IBM J Res Dev, 2008, 52: 439. doi: 10.1147/rd.524.0439

[2]

Lelmini D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling[J]. Semcond Sci Technol, 2016, 31: 063002. doi: 10.1088/0268-1242/31/6/063002

[3]

Borghetti J, Snider G S, Kuekes P J. Memristive switches enable 'stateful' logic operations via material implication[J]. Nature, 2010, 464: 873. doi: 10.1038/nature08940

[4]

Wong H S P, Salahuddin S. Memory leads the way to better computing[J]. Nat Nanotechnol, 2015, 10: 191. doi: 10.1038/nnano.2015.29

[5]

Li H, Gao B, Chen Z. A learnable parallel processing architecture towards unity of memory and computing[J]. Sci Res, 2015, 5: 13330.

[6]

Yang J J, Strukov D B, Stewart D R. Memristive devices for computing[J]. Nat Nano, 2013, 8: 13.

[7]

Pan F, Gao S, Chen C. Recent progress in resistive random access memories: materials, switching mechanisms, and performance[J]. Mater Sci Eng R, 2014, 83: 1. doi: 10.1016/j.mser.2014.06.002

[8]

Salvo B D, Gerardi C, Schaijk R V. Performance and reliability features of advanced nonvolatile memories based on discrete traps[J]. IEEE Trans Device Mater Rel, 2004, 4: 77.

[9]

Ielmimi D. Reliability issues and modeling of flash and post-flash memory[J]. Microelectron Eng, 2009, 86: 1870. doi: 10.1016/j.mee.2009.03.054

[10]

Gallagher W J, Parkin S S P. Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip[J]. IBM J Res Dev, 2006, 50: 5. doi: 10.1147/rd.501.0005

[11]

Kawahara T, Ito K, Takemura R. Spin-transfer torque RAM technology: review and prospect[J]. Microelectron Rel, 2012, 52: 613. doi: 10.1016/j.microrel.2011.09.028

[12]

Meena J S, Sze S M, Chand U. Overview of emerging nonvolatile memory technologies[J]. Nanoscale Res Lett, 2014, 9: 526. doi: 10.1186/1556-276X-9-526

[13]

Raoux S, Burr G W, Breitwisch M J. Phase-change random access memory: a scalable technology[J]. IBM J Res Dev, 2008, 52: 465. doi: 10.1147/rd.524.0465

[14]

Wong H S P, Lee H Y, Yu S M. Metal-oxide RRAM[J]. Proc IEEE, 2012, 1951: 1970.

[15]

Tehrani S, Engel B, Slaughter J M. Recent developments in magnetic tunnel junction MRAM[J]. IEEE Trans Magn, 2000, 36: 2752. doi: 10.1109/20.908581

[16]

Kawahara T, Ito K, Takemura R. Spin-transfer torque RAM technology: review and prospect[J]. Microelectron Reliab, 2012, 52: 613. doi: 10.1016/j.microrel.2011.09.028

[17]

Wong H S P, Raoux S, Kim S. Phase change memory[J]. Proc IEEE, 2010, 98: 2201. doi: 10.1109/JPROC.2010.2070050

[18]

Ye C, Wu J J, He G. Physical mechanism and performance factors of metal oxide based resistive switching memory: a review[J]. J Mater Sci Technol, 2016, 32: 1.

[19]

Balatti S, Ambrogio S, Wang Z Q. Voltage-controlled cycling endurance of HfOx-based resistive-switching memory (RRAM)[J]. IEEE Trans Electron Devices, 2015, 62: 3365. doi: 10.1109/TED.2015.2463104

[20]

Hou Y, Celano U, Goux L. Sub-10 nm low current resistive switching behavior in hafnium oxide stack[J]. Appl Phys Lett, 2016, 108: 123106. doi: 10.1063/1.4944841

[21]

Hickmott T W. Low-frequency negative resistance in thin anodic oxide films[J]. J Appl Phys, 1962, 33: 2669. doi: 10.1063/1.1702530

[22]

Asamitsu A, Tomioka Y, Kuwahara H. Current switching of resistive states in magnetoresistive manganites[J]. Nature, 1997, 50: 52.

[23]

Beck A, Bednorz J G, Gerber C. Reproducible switching effect in thin oxide films for memory applications[J]. Appl Phys Lett, 2000, 139: 141.

[24]

Watanabe Y, Bednorz J G, Bietsch A. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals[J]. Appl Phys Lett, 2001, 3738: 3740.

[25]

Zhang H W, Liu L F, Gao B. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach[J]. Appl Phys Lett, 2011, 98.

[26]

Zhang F F, Li X, Gao B. Complementary metal oxide semiconductor compatible Hf-based resistive random access memory with ultralow switching current/power[J]. Jpn J Appl Phys, 2012, 51: 04D.

[27]

Liu L F, Yu D, Chen B. Improvement of reliability characteristics of TiO2-based resistive switching memory device with an inserted ZnO layer[J]. Jpn J Appl Phys, 2012, 51: 101101.

[28]

Bousoulas P, Stathopoulos S, Tsialoukis D. Low-power and highly uniform 3-b multilevel switching in forming free TiO2-x-based RRAM with embedded Pt nanocrystals[J]. IEEE Electron Device Lett, 2016, 874: 877.

[29]

Liu L F, Hou Y, Chen B. Improved unipolar resistive switching characteristics of mixed-NiOx/NiOy-film-based resistive switching memory devices[J]. Jpn J Appl Phys, 2015, 54: 094201. doi: 10.7567/JJAP.54.094201

[30]

Zhang H W, Gao B, Sun B. Ionic doping effect in ZrO2 resistive switching memory[J]. Appl Phys Lett, 2010, 96: 123502. doi: 10.1063/1.3364130

[31]

Sun B, Liu L F, Xu N. The effect of current compliance on the resistive switching behaviors in TiN/ZrO2/Pt memory device[J]. Jpn J Appl Phys, 2009, 48: 04C.

[32]

Prakash A, Park J, Song J. Demonstration of low power 3-bit multilevel cell characteristics in a TaOx-based RRAM by stack engineering[J]. IEEE Electron Device Lett, 2015, 32: 34.

[33]

Zhao Y D, Huang P, Chen Z. Modeling and optimization of bilayered TaOx RRAM based on defect evolution and phase transition effects[J]. IEEE Electron Device Lett, 2016, 63: 1524. doi: 10.1109/TED.2016.2532470

[34]

Xu N, Liu L F, Sun X. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories[J]. Appl Phys Lett, 2008, 92: 232112. doi: 10.1063/1.2945278

[35]

Tran X A, Zhu W, Liu W J. A self-rectifying AlOy bipolar RRAM with sub-50-μA set/reset current for cross-bar architecture[J]. IEEE Electron Device Lett, 2012, 33: 1402. doi: 10.1109/LED.2012.2210855

[36]

Son D I, Kim T W, Shim J H. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer[J]. Nano Lett, 2010, 10: 2441. doi: 10.1021/nl1006036

[37]

Liu L F, Yu D, Ma W J. Multilevel resistive switching in Ag/SiO2/Pt resistive switching memory device[J]. Jpn J Appl Phys, 2015, 54: 021802. doi: 10.7567/JJAP.54.021802

[38]

Kuo C C, Chen I C, Shih C C. Galvanic effect of Au--Ag electrodes for conductive bridging resistive switching memory[J]. IEEE Electron Device Lett, 2015, 36: 1321. doi: 10.1109/LED.2015.2496303

[39]

Palma G, Vianello E, Thomas O. A novel HfO2-GeS2-Ag based conductive bridge RAM for reconfigurable logic applications[J]. Solid-State Device Research Conference (ESSDERC), 2013: 264.

[40]

Ota K, Belmonte A, Chen Z. Impact of the filament morphology on the retention characteristics of Cu/Al2O3-based CBRAM devices[J]. IEDM, 2016: 556.

[41]

Bernard Y, Renard V T, Gonon P. Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2[J]. Microelect Eng, 2011, 88: 814. doi: 10.1016/j.mee.2010.06.041

[42]

Belmonte A, Egraeve D, Fantini A. Origin of the current discretization in deep reset states of an Al2O3/Cu-based conductive-bridging memory, and impact on state level and variability[J]. Appl Phys Lett, 2014, 104: 233508. doi: 10.1063/1.4883856

[43]

Waser R, Aono M. Nanoionics-based resistive switching memories[J]. Nat Mater, 2007, 6: 833. doi: 10.1038/nmat2023

[44]

Gao B, Yu S, Xu N. Oxide-based RRAM switching mechanism: a new ion-transport-recombination model[J]. IEDM Tech Dig, 2008: 4796751.

[45]

Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films[J]. Appl Phys Lett, 2008, 92: 222106. doi: 10.1063/1.2931087

[46]

Celano Y, Chen Y Y, Wouters D J. Filament observation in metal-oxide resistive switching devices[J]. Appl Phys Lett, 2013, 102: 121602. doi: 10.1063/1.4798525

[47]

Kim D C, Seo S, Ahn S E. Electrical observations of filamentary conductions for the resistive memory switching in NiO films[J]. Appl Phys Lett, 2006, 88: 202102. doi: 10.1063/1.2204649

[48]

Guan W, Long S, Liu Q. Nonpolar nonvolatile resistive switching in Cu doped ZrO2[J]. IEEE Electron Device Lett, 2008, 29: 434. doi: 10.1109/LED.2008.919602

[49]

Rozenberg M J, Inoue I H, Sanchez M J. Nonvolatile memory with multilevel switching: a basic model[J]. Phys Rev Lett, 2004, 92: 178302. doi: 10.1103/PhysRevLett.92.178302

[50]

Fors R, Khartsev S I, Grishin A M. Giant resistance switching in metal--insulator--manganite junctions: evidence for Mott transition[J]. Phys Rev B, 2005, 71: 045305. doi: 10.1103/PhysRevB.71.045305

[51]

Tsymbal E Y, Kohlstedt H. Tunneling across a ferroelectric[J]. Science, 2006, 313: 181. doi: 10.1126/science.1126230

[52]

Gao B, Sun B, Zhang H W. Unified physical model of bipolar oxide-based resistive switching memory[J]. IEEE Electron Device Lett, 2009, 30: 1326. doi: 10.1109/LED.2009.2032308

[53]

Gao B, Kang J F, Chen Y S. Oxide-based RRAM: unified microscopic principle for both unipolar and bipolar switching[J]. IEDM Tech Dig, 2011: 17.

[54]

Huang P, Liu X Y, Li W H. A physical based analytic model of RRAM operation for circuit simulation[J]. IEDM Tech Dig, 2012: 26.

[55]

Huang P, Liu X Y, Chen B. A physics-based compact model of metal--oxide-based RRAM DC and AC operations[J]. IEEE Trans Electron Devices, 2013, 4090: 4097.

[56]

Li H T, Huang P, Gao B. A SPICE model of resistive random access memory for large-scale memory array simulation[J]. IEEE Electron Device Lett, 2014, 211: 21.

[57]

Gao B, Zhang H W, Yu S M. Oxide-based RRAM: uniformity improvement using a new material-oriented methodology[J]. VLSI Technol, 2009, 30: 31.

[58]

Valov I, Linn E, Tappertzhofen S. Nanobatteries in redox-based resistive switches require extension of memristor theory[J]. Nat Commun, 2013, 4: 1771. doi: 10.1038/ncomms2784

[59]

Kim S, Choi S H, Lu W. Comprehensive physical model of dynamic resistive switching in an oxide memristor[J]. ACS Nano, 2014, 8: 2369. doi: 10.1021/nn405827t

[60]

Hubbard W A, Kerelsky A, Jasmin G. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching[J]. Nano Lett, 2015, 15: 3983. doi: 10.1021/acs.nanolett.5b00901

[61]

Liu Q, Sun J, Lv H B. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM[J]. Adv Mater, 2012, 24: 1844. doi: 10.1002/adma.v24.14

[62]

Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films[J]. Appl Phys Lett, 2008, 22: 2106.

[63]

Celano U, Chen Y Y, Wouters D J. Filament observation in metal--oxide resistive switching devices[J]. Appl Phys Lett, 2013, 102: 121602. doi: 10.1063/1.4798525

[64]

Celano U, Goux L, Degraeve R. Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory[J]. Nano Lett, 2015, 15(12): 7970. doi: 10.1021/acs.nanolett.5b03078

[65]

Park G S, Kim Y B, Park Y S. In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure[J]. Nat Commun, 2013, 4: 2382.

[66]

Zhu X J, Su W J, Liu Y W. Observation of conductance quantization in oxide-based resistive switching memory[J]. Adv Mater, 2012, 24: 3941. doi: 10.1002/adma.v24.29

[67]

Li C, Gao B, Yao Y. Direct observations of nano lament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies[J]. Adv Mater, 2017, 29: 1602976. doi: 10.1002/adma.201602976

[68]

Yang U C, Gao P, Gaba S. Observation of conducting lament growth in nanoscale resistive memories[J]. Nat Commun, 2012, 3: 732. doi: 10.1038/ncomms1737

[69]

Celanoa U, Gouxa L, Opsomer K. Scanning probe microscopy as a scalpel to probe filament formation in conductive bridging memory devices[J]. Microelectron Eng, 2014, 120: 67. doi: 10.1016/j.mee.2013.06.001

[70]

Celano U, Goux L, Belmonte A. Understanding the dual nature of the filament dissolution in conductive bridging devices[J]. J Phys Chem Lett, 2015, 6: 1919. doi: 10.1021/acs.jpclett.5b00633

[71]

Sun H T, Liu Q, Li C F. Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology[J]. Adv Fun Mater, 2014, 5679: 5686.

[72]

Lee H Y, Chen P S, Wu Y Y. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM[J]. IEDM Tech Dig, 2008: 297.

[73]

Goux L, Sankaran K, Kar G. Field-driven ultrafast sub-ns programming in W/Al2O3/Ti/CuTe-based 1T1R CBRAM system[J]. Proc Symp VLSI Technol, 2012: 69.

[74]

Chen C Y, Goux L, Fantini A. Doped Gd--O based RRAM for embedded application[J]. IMW, 2016, 1: 4.

[75]

Piccolboni G, Parise M, Molas G. Vertical CBRAM (V-CBRAM): from experimental data to design perspectives[J]. IEEE International Memory Workshop (IMW), 2016.

[76]

Bousoulas P, Asenov P, Tsoukalas D. Physical modelling of the SET/RESET characteristics and analog properties of TiOx/HfO2-x/TiOx-based RRAM devices[J]. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2016: 249.

[77]

Woo J, Belmonte A, Redolfi A. Introduction of WO3 layer in a Cu-based Al2O3 conductive bridge RAM system for robust cycling and large memory window[J]. IEEE J Electron Devices, 2016, 4: 163. doi: 10.1109/JEDS.2016.2526632

[78]

Hsu C W, Wang I T, Lo C L. Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 10E12 cycles for 3D high-density storage-class memory[J]. Proc Symp VLSI Technol, 2013: 166.

[79]

Belmonte A, Kim W, Chan B T. 90 nm W/Al2O3/Ti/Cu 1T1R CBRAM cell showing low-power, fast and disturb-free operation[J]. IEEE International Memory Workshop, 2013, 26: 29.

[80]

Yang Y C, Chen C, Zeng F. Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism[J]. J Appl Phys, 2010, 107: 093701. doi: 10.1063/1.3399152

[81]

Sedghi N, Li H, Brunell F. The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM[J]. Appl Phys Lett, 2017, 110: 102902. doi: 10.1063/1.4978033

[82]

Kim W, Menzel S, Wouters D J. 3-bit multilevel switching by deep reset phenomenon in Pt/W/TaOx/Pt-ReRAM devices[J]. IEEE Electron Device Lett, 2016, 37: 564. doi: 10.1109/LED.2016.2542879

[83]

Tsuruoka T, Hasegawa T, Terabe K. Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch[J]. Nanotech, 2012, 23: 435705. doi: 10.1088/0957-4484/23/43/435705

[84]

Deng Y, Huang P, Chen B. RRAM crossbar array with cell selection device: a device and circuit interaction study[J]. IEEE Trans Electron Devices, 2013, 60: 719. doi: 10.1109/TED.2012.2231683

[85]

Kim S, Kim H, Choi S. Numerical study of read scheme in one-selector one-resistor crossbar array[J]. Solid State Electron, 2015, 114: 8.

[86]

Lee M, Park Y, Suh D. Two series oxide resistors applicable to high speed and high density nonvolatile memory[J]. Adv Mat, 2007, 19: 3919. doi: 10.1002/(ISSN)1521-4095

[87]

Koo Y, Baek K, Hwang H. Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications[J]. Proc Symp VLSI Technol, 2016: 16322184.

[88]

Burr G W, Virwani K, Shenoy R S. Large-scale (512 kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (Miec) at 100 yield[J]. Proc Symp VLSI Technol, 2012: 41.

[89]

Lee W, Park J, Shin J. Varistor-type bidirectional switch (JMAX >>10×107A/cm2, selectivity 10E4) for 3D bipolar resistive memory arrays[J]. Proc Symp VLSI Technol, 2012: 37.

[90]

Jo S H, Kumar T, Narayanan S. 3D-stackable crossbar resistive memory based on field assisted super-linear threshold (FAST) selector[J]. IEDM Tech Dig, 2014: 6.

[91]

Kim K H, Jo S H, Gaba S. Nanoscale resistive memory with intrinsic diode characteristics and long endurance[J]. Appl Phys Lett, 2010, 96: 053106. doi: 10.1063/1.3294625

[92]

Son M, Lee J, Park J. Excellent selector characteristics of nanoscale box for high-density bipolar ReRAM applications[J]. IEEE Electron Device Lett, 2011, 32: 1579. doi: 10.1109/LED.2011.2163697

[93]

Kim S, Liu X, Park J. Ultrathin V2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications[J]. Proc Symp VLSI Technol, 2012: 155.

[94]

Aluguri R, Tseng T. Overview of selector devices for 3-D stackable cross point RRAM arrays[J]. IEEE J Electron Devices, 2016, 4: 294. doi: 10.1109/JEDS.2016.2594190

[95]

Kim W G, Lee H M, Kim B Y. NbO2-based low power and cost effective 1S1R switching for high density cross point ReRAM application[J]. Proc Symp VLSI Technol, 2014.

[96]

Koo Y, Baek K, Hwang H. Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications[J]. Proc Symp VLSI Technol, 2016: 1.

[97]

Gopalakrishnan K, Shenoy R S, Rettner C T. Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays[J]. Proc Symp VLSI Technol, 2010: 205.

[98]

Lee W, Park J, Kim S. High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector---one resistor arrays[J]. ACS Nano, 2012, 9: 8166.

[99]

Jo S H, Kumar T, Narayanan S. 3D stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector[J]. IEDM Tech Dig, 2014: 6.

[100]

Luo Q, Xu X, Liu H, et al. Cu BEOL compatible selector with high selectivity (>10×107), extremely low off-current (~pA) and high endurance (>10×1010). IEDM Tech Dig, 201: 10. 4. 1

[101]

Luo Q, Xu X, Lv H. Fully BEOL compatible TaOx-based selector with high uniformity and robust performance[J]. IEDM Tech Dig, 2016: 11.

[102]

Hudec B, Hsu C W, Wang I T. 3D resistive RAM cell design for high-density storage class memory-a review[J]. Sci Chi Inf Sci, 2016, 59: 061403. doi: 10.1007/s11432-016-5566-0

[103]

Hsieh M C, Liao Y C, Chin Y W. Ultra high density 3D via RRAM in pure 28 nm CMOS process[J]. IEDM Tech Dig, 2013: 10.

[104]

Seok J, Song S J, Yoon J H. A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view[J]. Adv Funct Mater, 2015, 24: 5316.

[105]

Chen H, Gao B, Li H T. Towards high-speed, write-disturb tolerant 3D vertical RRAM arrays[J]. Proc Symp VLSI Technol, 2014.

[106]

Deng Y X, Chen H Y, Gao B. Design and optimization methodology for 3D RRAM arrays[J]. IEDM Tech Dig, 2013: 25.

[107]

Yu S M, Chen H Y, Gao B. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture[J]. ACS Nano, 2014, 7: 320.

[108]

Li H T, Li K S, Lin C H. Four-layer 3D vertical RRAM integrated with FinFET as a versatile computing unit for brain-inspired cognitive information[J]. Proc Symp VLSI Technol, 2016.

[109]

Xu X, Luo Q, Gong T. Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling[J]. Proc Symp VLSI Technol, 2016.

[110]

Luo Q, Xu X, Liu H. Demonstration of 3D vertical RRAM with ultra low-leakage, high-selectivity and self-compliance memory cells[J]. IEDM Tech Dig, 2015: 10.

[111]

Luo Q, Xu X, Liu H. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays[J]. Nanoscale, 2016, 8: 15629. doi: 10.1039/C6NR02029A

[112]

Yu S M, Deng Y X, Gao B. Design guidelines for 3D RRAM cross-point architecture[J]. IEEE International Symposium on Circuits and Systems (ISCAS), 2014: 421.

[113]

Chen P Y, Yu S M. Impact of vertical RRAM device characteristics on 3D cross-point array design[J]. International Memory Workshop (IMW), 2014.

[114]

Chen P Y, Li Z W, Yu S M. Design tradeoffs of vertical RRAM-based 3-D cross-point array[J]. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2016, 24: 3460. doi: 10.1109/TVLSI.2016.2553123

[115]

Li Z W, Chen P Y, Liu H J. Quasi-analytical model of 3-D vertical-RRAM array architecture for MB-level design[J]. IEEE Trans Electron Devices, 2017: 99.

[116]

Adam G C, Hoskins B D, Prezioso M. 3-D memristor crossbars for analog and neuromorphic computing applications[J]. IEEE Trans Electron Devices, 2017, 312: 318.

[117]

Bai Y, Wu H Q, Wang K. Stacked 3D RRAM array with graphene/CNT as edge electrodes[J]. Sci Rep, 2015, 5: 13785. doi: 10.1038/srep13785

[118]

Bai Y, Wu H Q, Wu R. Study of multi-level characteristics for 3D vertical resistive switching memory[J]. Sci Rep, 2014, 4: 5780.

[119]

Ni L, Wang Y, Yu H. An energy-efficient matrix multiplication accelerator by distributed in-memory computing on binary RRAM crossbar[J]. ASP-DAC, 2016, 280: 285.

[120]

Li H, Chen Z, Ma W. Nonvolatile logic and in situ data transfer demonstrated in crossbar resistive RAM array[J]. IEEE Electron Device Lett, 2015, 1142: 1145.

[121]

Zhou Y X, Li Y, Xu L. Boolean logics in three steps with two anti-serially connected memristors[J]. Appl Phys Lett, 2015, 106: 233502. doi: 10.1063/1.4922344

[122]

Zhou Y X, Li Y, Su Y T. Nonvolatile reconfigurable sequential logic in HfO2 resistive random access memory array[J]. Nanoscale, 2017, 9: 6649. doi: 10.1039/C7NR00934H

[123]

Li Y, Zhou Y X, Xu L. Realization of functional complete stateful boolean logic in memristive crossbar[J]. ACS Appl Mater Interfaces, 2016, 8: 34559. doi: 10.1021/acsami.6b11465

[124]

Kang J F, Huang P, Gao B. Design and application of oxide-based resistive switching devices for novel computing architectures[J]. IEEE J Electron Devices, 2016, 307: 313.

[125]

Rosezin R, Linn E, Kugeler C. Crossbar logic using bipolar and complementary resistive switches[J]. IEEE Electron Device Lett, 2011, 32: 710. doi: 10.1109/LED.2011.2127439

[126]

Linn E, Rosezin R, Tappertzhofen S. Beyond von Neumann--logic operations inpassive crossbar arrays alongside memory operations[J]. Nanotechnology, 2012, 23: 305205. doi: 10.1088/0957-4484/23/30/305205

[127]

Breuer T, Siemon A, Linn E. A HfO2-based complementary switching crossbar Adder[J]. Adv Electron Mater, 2015, 1: 64.

[128]

Siemon A, Menzel S, Waser R. A complementary resistive switch-based crossbar array adder[J]. IEEE J Emerg Sel Top Circuits Syst, 2014, 5: 64.

[129]

Gokmen T, Vlasov Y. Acceleration of deep neural network training with resistive cross-point devices[J]. arXiv preprint arXiv, 2016, 1603: 07341.

[130]

Huang P, Kang J F, Zhao Y D. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits[J]. Adv Mater, 2016, 28: 9758. doi: 10.1002/adma.201602418

[131]

Chen Y C, Chang Y F, Wu X H. Dynamic conductance characteristics in HfOx based resistive random access memory[J]. RSC Adv, 2017, 12984: 12989.

[132]

Lim S, Yoo J, Song J. Excellent threshold switching device (IOFF~1 pA) with atom-scale metal filament for steep slope ( < 5 mV/dec), ultra low voltage (VDD = 0.25 V) FET applications[J]. IEDM, 2016: 34.

[133]

Chang K C, Zhang R, Chang T C. High performance, excellent reliability multifunctional graphene oxide doped memristor achieved by self-protective compliance current structure[J]. IEDM, 2014: 33.

[134]

Huang Y, Shen Z H, Wu Y. Amorphous ZnO based resistive random access memory[J]. RSC Adv, 2016, 17867: 17872.

[1]

Jin Yang, Yuehua Dai, Shibin Lu, Xianwei Jiang, Feifei Wang, Junning Chen. Physical mechanism of resistance switching in the co-doped RRAM. J. Semicond., 2017, 38(1): 014008. doi: 10.1088/1674-4926/38/1/014008

[2]

Yuanyang Zhao, Jiayu Wang, Jianbin Xu, Fei Yang, Qi Liu, Yuehua Dai. Metal dopants in HfO2-based RRAM:first principle study. J. Semicond., 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002

[3]

Liu Qi, Long Shibing, Guan Weihua, Zhang Sen, Liu Ming, Chen Junning. Unipolar resistive switching of Au+-implanted ZrO2 films. J. Semicond., 2009, 30(4): 042001. doi: 10.1088/1674-4926/30/4/042001

[4]

Jiahua Zhang, Da Chen, Shihua Huang. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device. J. Semicond., 2017, 38(12): 122003. doi: 10.1088/1674-4926/38/12/122003

[5]

Qiang Zhao, Maoxiu Zhou, Wei Zhang, Qi Liu, Xiaofeng Li, Ming Liu, Yuehua Dai. Effects of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study. J. Semicond., 2013, 34(3): 032001. doi: 10.1088/1674-4926/34/3/032001

[6]

Zhiqiang You, Fei Hu, Liming Huang, Peng Liu, Jishun Kuang, Shiying Li. A long lifetime, low error rate RRAM design with self-repair module. J. Semicond., 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004

[7]

Yan Na, Tan Xi, Zhao Dixian, Min Hao. An Ultra-Low-Power Embedded EEPROM for Passive RFID Tags. J. Semicond., 2006, 27(6): 994.

[8]

Jinlong Lu, Jing Luo, Hongpeng Zhao, Jin Yang, Xianwei Jiang, Qi Liu, Xiaofeng Li, Yuehua Dai. Optimal migration route of Cu in HfO2. J. Semicond., 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001

[9]

Xiaoyu Chen, Hao Wang, Gongchen Sun, Xiaoyu Ma, Jianguang Gao, Wengang Wu. Resistive switching characteristic of electrolyte-oxide-semiconductor structures. J. Semicond., 2017, 38(8): 084003. doi: 10.1088/1674-4926/38/8/084003

[10]

Ran Jiang, Xianghao Du, Zuyin Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory. J. Semicond., 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006

[11]

Wang Guangli, Chen Yubin, Shi Yi, Pu Lin, Pan Lijia, Zhang Rong, Zheng Youdou. Density-controllable nonvolatile memory devices having metal nanocrystals through chemical synthesis and assembled by spin-coating technique. J. Semicond., 2010, 31(12): 124011. doi: 10.1088/1674-4926/31/12/124011

[12]

Meilin He, Jingping Xu, Jianxiong Chen, Lu Liu. Improved memory performance of metal-oxide-nitride-oxide-silicon by annealing the SiO2 tunnel layer in different nitridation atmospheres. J. Semicond., 2013, 34(11): 114005. doi: 10.1088/1674-4926/34/11/114005

[13]

Wei Sun. A low temperature processed Si-quantum-dot poly-Si TFT nonvolatile memory device. J. Semicond., 2013, 34(6): 064008. doi: 10.1088/1674-4926/34/6/064008

[14]

Lü Jin, Chen Yubin, Zuo Zheng, Shi Yi, Pu Lin, Zheng Youdou. Charge Storage Characteristics of Nonvolatile Floating-Gate Memory Based on Gradual Ge1-xSix/Si Heteronanocrystals. J. Semicond., 2008, 29(4): 770.

[15]

Mao Ping, Zhang Zhigang, Pan Liyang, Xu Jun, Chen Peiyi. Formation of stacked ruthenium nanocrystals embedded in SiO2 for nonvolatile memory applications. J. Semicond., 2009, 30(9): 093003. doi: 10.1088/1674-4926/30/9/093003

[16]

Da Chen, Shihua Huang, Lü He. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film. J. Semicond., 2017, 38(4): 043002. doi: 10.1088/1674-4926/38/4/043002

[17]

Zhang Xiao. Resistive switching characteristics of Ni/HfO2/Pt ReRAM. J. Semicond., 2012, 33(5): 054011. doi: 10.1088/1674-4926/33/5/054011

[18]

Juntao Li, Bo Liu, Zhitang Song, Dongning Yao, Gaoming Feng, Aodong He, Cheng Peng, Songlin Feng. Reactive ion etching of Si2Sb2Te5 in CF4/Ar plasma for a nonvolatile phase-change memory device. J. Semicond., 2013, 34(5): 056001. doi: 10.1088/1674-4926/34/5/056001

[19]

Patrick W. C. Ho, Firas Odai Hatem, Haider Abbas F. Almurib, T. Nandha Kumar. Comparison between Pt/TiO2/Pt and Pt/TaOX/TaOY/Pt based bipolar resistive switching devices. J. Semicond., 2016, 37(6): 064001. doi: 10.1088/1674-4926/37/6/064001

[20]

Ni Henan, Wu Liangcai, Song Zhitang, Hui Chun. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals. J. Semicond., 2009, 30(11): 114003. doi: 10.1088/1674-4926/30/11/114003

Search

Advanced Search >>

GET CITATION

D B Zhu, Y Li, W S Shen, Z Zhou, L F Liu, X Zhang. Resistive random access memory and its applications in storage and nonvolatile logic[J]. J. Semicond., 2017, 38(7): 071002. doi: 10.1088/1674-4926/38/7/071002.

Export: BibTex EndNote

Article Metrics

Article views: 3171 Times PDF downloads: 74 Times Cited by: 0 Times

History

Manuscript received: 18 March 2017 Manuscript revised: 08 May 2017 Online: Published: 01 July 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误