J. Semicond. > Volume 38 > Issue 7 > Article Number: 073001

The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations

Azeem Nabi 1, , , Zarmeena Akhtar 1, , Tahir Iqbal 1, , Atif Ali 1, and Arshad Javid 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: In this article, density functional theory (DFT) based on generalized gradient approximation (GGA) and GGA+U, U is Hubbard term, is used to study the electronic properties of CdS doped with different dopants (Cr, Mn). The calculations are carried out for Mn-doped CdS, Cr-doped CdS, and co-doping of Mn/Cr in CdS simultaneously. It is found that hopping of electrons is possible with Cr:CdS and Mn:Cr:CdS while Mn:CdS does not allow the hopping of electrons. Moreover, double exchange interactions are observed in Cr:CdS and d-d super-exchange interactions are observed in Mn:CdS. Now the problem becomes interesting when one magnetic ion (Cr) supporting double exchange interactions and another ion (Mn) supporting d-d super-exchange interactions are doped simultaneously in the same system (CdS). The co-doped CdS is more stable even at high Curie temperature due to p-d double exchange interactions and d-d super exchange interactions. Furthermore, the Cr-3d and Mn-3d states present in-between the band gap are responsible for inner shell transitions and hence for optical properties. Therefore, the co-doped system is taken into account to enhance its applications in the field of spintronic and magneto-optical devices.

Key words: wurtzitefirst principlesdensity functional theory

Abstract: In this article, density functional theory (DFT) based on generalized gradient approximation (GGA) and GGA+U, U is Hubbard term, is used to study the electronic properties of CdS doped with different dopants (Cr, Mn). The calculations are carried out for Mn-doped CdS, Cr-doped CdS, and co-doping of Mn/Cr in CdS simultaneously. It is found that hopping of electrons is possible with Cr:CdS and Mn:Cr:CdS while Mn:CdS does not allow the hopping of electrons. Moreover, double exchange interactions are observed in Cr:CdS and d-d super-exchange interactions are observed in Mn:CdS. Now the problem becomes interesting when one magnetic ion (Cr) supporting double exchange interactions and another ion (Mn) supporting d-d super-exchange interactions are doped simultaneously in the same system (CdS). The co-doped CdS is more stable even at high Curie temperature due to p-d double exchange interactions and d-d super exchange interactions. Furthermore, the Cr-3d and Mn-3d states present in-between the band gap are responsible for inner shell transitions and hence for optical properties. Therefore, the co-doped system is taken into account to enhance its applications in the field of spintronic and magneto-optical devices.

Key words: wurtzitefirst principlesdensity functional theory



References:

[1]

Sadhu S, Patra A. Synthesis and spectroscopic study of high quality alloy CdxZn1-xS nanocrystals[J]. J Chem Sci, 2008, 120(6): 557. doi: 10.1007/s12039-008-0085-1

[2]

Razykov T M, S Zh K, Yu A L. Effect of the grain boundaries on the conductivity and current transport in Ⅱ-VI films[J]. Sol Energy Mater Sol Cells, 2006, 90: 2255. doi: 10.1016/j.solmat.2006.02.025

[3]

Wei S H, Zhang S B. Structure stability and carrier localization in CdX (X = S, Se, Te) semiconductors[J]. Phys Rev B, 2000, 62: 6944. doi: 10.1103/PhysRevB.62.6944

[4]

Segura A, Sans J A. Optical properties and electronic structure of rock-salt ZnO under pressure[J]. Appl Phys Lett, 2003, 83: 278. doi: 10.1063/1.1591995

[5]

Gronin S V, Sorokin S V, Kazanov D R. CdSe/ZnCdSe quantum dot hetrostructures for yellow spectral range grown on GaAs substrates by molecular beam epitaxy[J]. Acta Phys Polonica A, 2014, 126(5): 1096. doi: 10.12693/APhysPolA.126.1096

[6]

Chen X, Hua X, Hu J. Band structures of Ⅱ-Ⅵ semiconductors using Gaussian basis functions with separable ab initio pseudopotentials: application to prediction of band offsets[J]. Phys Rev B, 1996, 53(3): 1377. doi: 10.1103/PhysRevB.53.1377

[7]

Greenwood N N, Earnshaw A. Chemistry of the elements. 2nd ed. Butterworth-Heinemann, Oxford, 1997

[8]

Wang J, Isshiki M. Wide-bandgap Ⅱ-Ⅵ semiconductors: growth and properties[J]. Springer Handbook of Electronic and Photonic Materials, 2007: 325.

[9]

Ekuma E C, Franklin L, Zhao G L. Local density approximation description of electronic properties of wurtzite cadmium sulfide (w-CdS)[J]. Can J Phys, 2011, 89: 319. doi: 10.1139/P11-023

[10]

Pal U, Gonzalez R S, Martinez G M. Optical characterization of vacuum evaporated cadmium sulfide films[J]. Thin Solid Films, 1997, 305(1): 345.

[11]

Caglar M, Zor M, Ilican S. Effect of indium incorporation on the optical properties of spray pyrolyzed Cd0.22Zn0.78S thin films[J]. Czech J Phys, 2006, 56(3): 277. doi: 10.1007/s10582-006-0088-4

[12]

Brusatin G, Guglielmi M, Innocenzi P. Materials for photonic applications from sol-gel[J]. J Electroceram, 2000, 4: 151. doi: 10.1023/A:1009981510609

[13]

El Amine Monir M, Baltache H, Khenata R. Half-metallicity and optoelectronic properties of V-doped zincblende ZnS and CdS alloys[J]. Int J Mod Phys B, 2016, 30(8): 1650034. doi: 10.1142/S021797921650034X

[14]

Zuo T, Sun Z, Zhao Y. The big red shift of photoluminescence of Mn dopants in strained CdS: a case study of Mn-doped MnS-CdS heteronanostructures[J]. J Am Chem Soc, 2010, 132(19): 6618. doi: 10.1021/ja100136a

[15]

Chen C C, Herhold A B, Johnson C S. Size dependence of structural metastability in semiconductor nanocrystals[J]. Science, 1997, 276(5311): 398. doi: 10.1126/science.276.5311.398

[16]

Hossain M A, Koh Z Y, Wang Q. PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing[J]. Phys Chem Chem Phys, 2012, 14: 7367. doi: 10.1039/c2cp40551b

[17]

Ouachtari F, Rmili A, Elidrissi S E B. Influence of bath temperature, deposition time and[J]. J Mod Phys, 2011, 2(9): 1073. doi: 10.4236/jmp.2011.29131

[18]

Ulrich F, Zachariasen W. On the crystal structure of alpha and beta CdS and wurtzite[J]. Zeitschrift Fuer Kristallographie, 1925, 62(3/4): 260.

[19]

Rooymans C J M. Structure of the high pressure phase of CdS, CdSe and InSb[J]. Phys Lett, 1963, 4(3): 186. doi: 10.1016/0031-9163(63)90356-1

[20]

Stanely W W L, Rabii S. Relativistic electronic structure of the NaCl polymorph of CdS[J]. Phys Rev B, 1976, 13: 1675. doi: 10.1103/PhysRevB.13.1675

[21]

Adachi S. Optical constants of crystalline and amorphous semiconductors[J]. Springer, 1999: 487.

[22]

Yeh C Y, Lu Z W, Froyen S. Zinc-blende-wurtzite polytypism in semiconductors[J]. Phys Rev B, 1992, 46: 10086. doi: 10.1103/PhysRevB.46.10086

[23]

Antolini F, Pentamali M, Luccio D T. Structural characterization of CdS nanoparticles grown in polystyrene matrix by thermolytic synthesis[J]. Mater Lett, 2005, 59: 3181. doi: 10.1016/j.matlet.2005.05.047

[24]

Wu C H, Bube R H. Thermoelectric and photothermoelectric effects in semiconductors: cadmium sulfide films[J]. J Appl Phys, 1974, 45(2): 648. doi: 10.1063/1.1663298

[25]

Altosaar M, Ernits K, Krustok J. Comparison of CdS films deposited from chemical baths containing different doping impurities[J]. Thin Solid Films, 2005, 147: 480.

[26]

Sankar N, Sanjeeviraja C, Ramachandran K. Growth and characterization of CdS and doped CdS single crystals[J]. J Cryst Growth, 2002, 243: 117. doi: 10.1016/S0022-0248(02)01488-4

[27]

Atay F, Kose S, Bilgin V. CdS:Ni films obtained by ultrasonic spray pyrolysis: effect of the Ni concentration[J]. Mater Lett, 2003, 57: 3461. doi: 10.1016/S0167-577X(03)00100-9

[28]

Badera N, Godbole B, Srivastava S B. Quenching of photoconductivity in Fe doped CdS thin films prepared by spray pyrolysis technique[J]. Appl Surf Sci, 2008, 254: 7042. doi: 10.1016/j.apsusc.2008.05.218

[29]

Rubel A H, Podder J. Structural and electrical transport properties of CdS and Al-doped CdS thin films deposited by spray pyrolysis[J]. J Sci Res, 2012, 4(1): 11.

[30]

Zhang Z Y, Tang W H, F , Fu X L. Electronic and luminescent properties of Cr-doped cadmium sulfide nanowires[J]. Chin Phys B, 2006, 15(4): 773. doi: 10.1088/1009-1963/15/4/018

[31]

Saini H S, Singh M, Reshak A H. Variation of half metallicity and magnetism of Cd1-xCrxZ (Z = S, Se and Te) DMS compounds on reducing dilute limit[J]. J Magn Magn Mater, 2013, 331: 1. doi: 10.1016/j.jmmm.2012.10.044

[32]

Thiyagarajan R, Anusuya M, Mahaboob Beevi M. Nano structural characteristics of zirconium sulphide thin films[J]. J Am Sci, 2009, 5(3): 26.

[33]

Battisha I K, Afify H H, Fattah G A E. Raman and photoluminescence studies of pure and Sn-enriched thin films of CdS prepared by spray pyrolysis[J]. Fizika A, 2002, 11(1): 31.

[34]

Tang J P, Wang L, Luo H J. Magnetic properties in zinc-blende CdS induced by Cd vacancies[J]. Phys Lett A, 2013, 377(7): 572. doi: 10.1016/j.physleta.2012.12.038

[35]

Wu J C, Zheng J W, Wu P. Study of native defects and transition-metal (Mn, Fe, Co, and Ni) doping in a zinc-blende CdS photocatalyst by DFT and hybrid DFT calculations[J]. J Phys Chem C, 2011, 115: 5675. doi: 10.1021/jp109567c

[36]

Kulkarni J S, Kazakova O, Holmes J D. Dilute magnetic semiconductor nanowires[J]. Appl Phys A, 2006, 85(3): 277. doi: 10.1007/s00339-006-3722-x

[37]

BAND2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

[38]

Jain A, Hautier G, Ong S P. Formation enthalpies by mixing GGA and GGA+U calculations[J]. Phys Rev B, 2011, 84: 045115. doi: 10.1103/PhysRevB.84.045115

[39]

Calderon H I. Optical properties and electronic structure of wide band gap Ⅱ-Ⅵ semiconductors. New York: Taylor and Francis, 2002

[40]

Cotton F A. Ligand field theory[J]. J Chem Educ, 1964, 41(9): 466. doi: 10.1021/ed041p466

[41]

Lefebvre P, Richard T, Alle'gre J. Measurement of the optical band gap and crystal-field splitting in wurtzite CdTe[J]. Phys Rev B, 1996, 53(23): 15440. doi: 10.1103/PhysRevB.53.15440

[42]

Mamouni N, Benyoussef A, Kenz A E. A comparative first-principles study of Fe-, Co-and FeCo-doped ZnO with wurtzite and zinc blende structures[J]. J Supercond Nov Magn, 2012, 25: 1579. doi: 10.1007/s10948-012-1476-6

[43]

Basha S M, Ramasubramanian S, Rajagopalan M. Investigations of cobalt and carbon codoping in gallium nitride for spintronic applications[J]. J Magn Magn Mater, 2012, 324: 1528. doi: 10.1016/j.jmmm.2011.11.059

[44]

Nakaya M, Tanaka I, Muramatsu A. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties[J]. J Nanosci Nanotechnol, 2012, 12: 9003. doi: 10.1166/jnn.2012.6706

[45]

Bogle K A, Ghosh S, Dhole S D. Co:CdS diluted magnetic semiconductor nanoparticles: radiation synthesis, dopant-defect complex formation, and unexpected magnetism[J]. Chem Mater, 2008, 20: 440. doi: 10.1021/cm702118w

[46]

Hoffman D M, Meyer B K, Ekimov A I. Giant internal magnetic fields in Mn doped nanocrystal quantum dots[J]. Solid State Commun, 2000, 114: 547. doi: 10.1016/S0038-1098(00)00089-2

[47]

Azeem N. The electronic and the magnetic properties of Mn doped wurtzite, CdS: first-principles calculations[J]. Comput Mater Sci, 2016, 112: 210. doi: 10.1016/j.commatsci.2015.10.039

[48]

Vargas H C, Espitia R M J, Baez C R E. Half-metallic ferromagnetism of ZnxMn1-xO compounds: a first-principles study[J]. Comput Conden Matter, 2015, 4: 1. doi: 10.1016/j.cocom.2015.04.001

[1]

Sadhu S, Patra A. Synthesis and spectroscopic study of high quality alloy CdxZn1-xS nanocrystals[J]. J Chem Sci, 2008, 120(6): 557. doi: 10.1007/s12039-008-0085-1

[2]

Razykov T M, S Zh K, Yu A L. Effect of the grain boundaries on the conductivity and current transport in Ⅱ-VI films[J]. Sol Energy Mater Sol Cells, 2006, 90: 2255. doi: 10.1016/j.solmat.2006.02.025

[3]

Wei S H, Zhang S B. Structure stability and carrier localization in CdX (X = S, Se, Te) semiconductors[J]. Phys Rev B, 2000, 62: 6944. doi: 10.1103/PhysRevB.62.6944

[4]

Segura A, Sans J A. Optical properties and electronic structure of rock-salt ZnO under pressure[J]. Appl Phys Lett, 2003, 83: 278. doi: 10.1063/1.1591995

[5]

Gronin S V, Sorokin S V, Kazanov D R. CdSe/ZnCdSe quantum dot hetrostructures for yellow spectral range grown on GaAs substrates by molecular beam epitaxy[J]. Acta Phys Polonica A, 2014, 126(5): 1096. doi: 10.12693/APhysPolA.126.1096

[6]

Chen X, Hua X, Hu J. Band structures of Ⅱ-Ⅵ semiconductors using Gaussian basis functions with separable ab initio pseudopotentials: application to prediction of band offsets[J]. Phys Rev B, 1996, 53(3): 1377. doi: 10.1103/PhysRevB.53.1377

[7]

Greenwood N N, Earnshaw A. Chemistry of the elements. 2nd ed. Butterworth-Heinemann, Oxford, 1997

[8]

Wang J, Isshiki M. Wide-bandgap Ⅱ-Ⅵ semiconductors: growth and properties[J]. Springer Handbook of Electronic and Photonic Materials, 2007: 325.

[9]

Ekuma E C, Franklin L, Zhao G L. Local density approximation description of electronic properties of wurtzite cadmium sulfide (w-CdS)[J]. Can J Phys, 2011, 89: 319. doi: 10.1139/P11-023

[10]

Pal U, Gonzalez R S, Martinez G M. Optical characterization of vacuum evaporated cadmium sulfide films[J]. Thin Solid Films, 1997, 305(1): 345.

[11]

Caglar M, Zor M, Ilican S. Effect of indium incorporation on the optical properties of spray pyrolyzed Cd0.22Zn0.78S thin films[J]. Czech J Phys, 2006, 56(3): 277. doi: 10.1007/s10582-006-0088-4

[12]

Brusatin G, Guglielmi M, Innocenzi P. Materials for photonic applications from sol-gel[J]. J Electroceram, 2000, 4: 151. doi: 10.1023/A:1009981510609

[13]

El Amine Monir M, Baltache H, Khenata R. Half-metallicity and optoelectronic properties of V-doped zincblende ZnS and CdS alloys[J]. Int J Mod Phys B, 2016, 30(8): 1650034. doi: 10.1142/S021797921650034X

[14]

Zuo T, Sun Z, Zhao Y. The big red shift of photoluminescence of Mn dopants in strained CdS: a case study of Mn-doped MnS-CdS heteronanostructures[J]. J Am Chem Soc, 2010, 132(19): 6618. doi: 10.1021/ja100136a

[15]

Chen C C, Herhold A B, Johnson C S. Size dependence of structural metastability in semiconductor nanocrystals[J]. Science, 1997, 276(5311): 398. doi: 10.1126/science.276.5311.398

[16]

Hossain M A, Koh Z Y, Wang Q. PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing[J]. Phys Chem Chem Phys, 2012, 14: 7367. doi: 10.1039/c2cp40551b

[17]

Ouachtari F, Rmili A, Elidrissi S E B. Influence of bath temperature, deposition time and[J]. J Mod Phys, 2011, 2(9): 1073. doi: 10.4236/jmp.2011.29131

[18]

Ulrich F, Zachariasen W. On the crystal structure of alpha and beta CdS and wurtzite[J]. Zeitschrift Fuer Kristallographie, 1925, 62(3/4): 260.

[19]

Rooymans C J M. Structure of the high pressure phase of CdS, CdSe and InSb[J]. Phys Lett, 1963, 4(3): 186. doi: 10.1016/0031-9163(63)90356-1

[20]

Stanely W W L, Rabii S. Relativistic electronic structure of the NaCl polymorph of CdS[J]. Phys Rev B, 1976, 13: 1675. doi: 10.1103/PhysRevB.13.1675

[21]

Adachi S. Optical constants of crystalline and amorphous semiconductors[J]. Springer, 1999: 487.

[22]

Yeh C Y, Lu Z W, Froyen S. Zinc-blende-wurtzite polytypism in semiconductors[J]. Phys Rev B, 1992, 46: 10086. doi: 10.1103/PhysRevB.46.10086

[23]

Antolini F, Pentamali M, Luccio D T. Structural characterization of CdS nanoparticles grown in polystyrene matrix by thermolytic synthesis[J]. Mater Lett, 2005, 59: 3181. doi: 10.1016/j.matlet.2005.05.047

[24]

Wu C H, Bube R H. Thermoelectric and photothermoelectric effects in semiconductors: cadmium sulfide films[J]. J Appl Phys, 1974, 45(2): 648. doi: 10.1063/1.1663298

[25]

Altosaar M, Ernits K, Krustok J. Comparison of CdS films deposited from chemical baths containing different doping impurities[J]. Thin Solid Films, 2005, 147: 480.

[26]

Sankar N, Sanjeeviraja C, Ramachandran K. Growth and characterization of CdS and doped CdS single crystals[J]. J Cryst Growth, 2002, 243: 117. doi: 10.1016/S0022-0248(02)01488-4

[27]

Atay F, Kose S, Bilgin V. CdS:Ni films obtained by ultrasonic spray pyrolysis: effect of the Ni concentration[J]. Mater Lett, 2003, 57: 3461. doi: 10.1016/S0167-577X(03)00100-9

[28]

Badera N, Godbole B, Srivastava S B. Quenching of photoconductivity in Fe doped CdS thin films prepared by spray pyrolysis technique[J]. Appl Surf Sci, 2008, 254: 7042. doi: 10.1016/j.apsusc.2008.05.218

[29]

Rubel A H, Podder J. Structural and electrical transport properties of CdS and Al-doped CdS thin films deposited by spray pyrolysis[J]. J Sci Res, 2012, 4(1): 11.

[30]

Zhang Z Y, Tang W H, F , Fu X L. Electronic and luminescent properties of Cr-doped cadmium sulfide nanowires[J]. Chin Phys B, 2006, 15(4): 773. doi: 10.1088/1009-1963/15/4/018

[31]

Saini H S, Singh M, Reshak A H. Variation of half metallicity and magnetism of Cd1-xCrxZ (Z = S, Se and Te) DMS compounds on reducing dilute limit[J]. J Magn Magn Mater, 2013, 331: 1. doi: 10.1016/j.jmmm.2012.10.044

[32]

Thiyagarajan R, Anusuya M, Mahaboob Beevi M. Nano structural characteristics of zirconium sulphide thin films[J]. J Am Sci, 2009, 5(3): 26.

[33]

Battisha I K, Afify H H, Fattah G A E. Raman and photoluminescence studies of pure and Sn-enriched thin films of CdS prepared by spray pyrolysis[J]. Fizika A, 2002, 11(1): 31.

[34]

Tang J P, Wang L, Luo H J. Magnetic properties in zinc-blende CdS induced by Cd vacancies[J]. Phys Lett A, 2013, 377(7): 572. doi: 10.1016/j.physleta.2012.12.038

[35]

Wu J C, Zheng J W, Wu P. Study of native defects and transition-metal (Mn, Fe, Co, and Ni) doping in a zinc-blende CdS photocatalyst by DFT and hybrid DFT calculations[J]. J Phys Chem C, 2011, 115: 5675. doi: 10.1021/jp109567c

[36]

Kulkarni J S, Kazakova O, Holmes J D. Dilute magnetic semiconductor nanowires[J]. Appl Phys A, 2006, 85(3): 277. doi: 10.1007/s00339-006-3722-x

[37]

BAND2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

[38]

Jain A, Hautier G, Ong S P. Formation enthalpies by mixing GGA and GGA+U calculations[J]. Phys Rev B, 2011, 84: 045115. doi: 10.1103/PhysRevB.84.045115

[39]

Calderon H I. Optical properties and electronic structure of wide band gap Ⅱ-Ⅵ semiconductors. New York: Taylor and Francis, 2002

[40]

Cotton F A. Ligand field theory[J]. J Chem Educ, 1964, 41(9): 466. doi: 10.1021/ed041p466

[41]

Lefebvre P, Richard T, Alle'gre J. Measurement of the optical band gap and crystal-field splitting in wurtzite CdTe[J]. Phys Rev B, 1996, 53(23): 15440. doi: 10.1103/PhysRevB.53.15440

[42]

Mamouni N, Benyoussef A, Kenz A E. A comparative first-principles study of Fe-, Co-and FeCo-doped ZnO with wurtzite and zinc blende structures[J]. J Supercond Nov Magn, 2012, 25: 1579. doi: 10.1007/s10948-012-1476-6

[43]

Basha S M, Ramasubramanian S, Rajagopalan M. Investigations of cobalt and carbon codoping in gallium nitride for spintronic applications[J]. J Magn Magn Mater, 2012, 324: 1528. doi: 10.1016/j.jmmm.2011.11.059

[44]

Nakaya M, Tanaka I, Muramatsu A. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties[J]. J Nanosci Nanotechnol, 2012, 12: 9003. doi: 10.1166/jnn.2012.6706

[45]

Bogle K A, Ghosh S, Dhole S D. Co:CdS diluted magnetic semiconductor nanoparticles: radiation synthesis, dopant-defect complex formation, and unexpected magnetism[J]. Chem Mater, 2008, 20: 440. doi: 10.1021/cm702118w

[46]

Hoffman D M, Meyer B K, Ekimov A I. Giant internal magnetic fields in Mn doped nanocrystal quantum dots[J]. Solid State Commun, 2000, 114: 547. doi: 10.1016/S0038-1098(00)00089-2

[47]

Azeem N. The electronic and the magnetic properties of Mn doped wurtzite, CdS: first-principles calculations[J]. Comput Mater Sci, 2016, 112: 210. doi: 10.1016/j.commatsci.2015.10.039

[48]

Vargas H C, Espitia R M J, Baez C R E. Half-metallic ferromagnetism of ZnxMn1-xO compounds: a first-principles study[J]. Comput Conden Matter, 2015, 4: 1. doi: 10.1016/j.cocom.2015.04.001

[1]

Wan Qixin, Xiong Zhihua, Rao Jianping, Dai Jiangnan, Le Shuping, Wang Guping, Jiang Fengyi. First-Principles Calculation of ZnO Doped with Ag. J. Semicond., 2007, 28(5): 696.

[2]

Yuxiang Qin, Deyan Hua, Xiao Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002

[3]

Yuping Cang, Xiaoling Yao, Dong Chen, Fan Yang, Huiming Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002

[4]

Dong Chen, Yuping Cang, Yongsong Luo. Electronic structures and phase transition characters of β-, P61-, P62- and δ-Si3N4 under extreme conditions: a density functional theory study. J. Semicond., 2015, 36(2): 023003. doi: 10.1088/1674-4926/36/2/023003

[5]

Guoping Luo, Yingmei Bian, Ruifeng Wu, Guoxia Lai, Xiangfu Xu, Weiwei Zhang, Xingyuan Chen. First principles study of the electronic structure and photovoltaic properties of β-CuGaO2 with MBJ + U approach. J. Semicond., 2020, 41(10): 102102. doi: 10.1088/1674-4926/41/10/102102

[6]

Zhonghua Yang, Guili Liu, Yingdong Qu, Rongde Li. First-principle study on energy gap of CNT superlattice structure. J. Semicond., 2015, 36(10): 102002. doi: 10.1088/1674-4926/36/10/102002

[7]

Ying Yang, Qing Feng, Weihua Wang, Yin Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

[8]

Yun Jiangni, Zhang Zhiyong, Deng Zhouhu, Zhang Fuchun. First-Principle Calculation of the Electronic Structure of Sb-Doped SrTiO3. J. Semicond., 2006, 27(9): 1537.

[9]

Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, Sudeepto Dasgupta, J.P. Banerjee. Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies. J. Semicond., 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003

[10]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[11]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[12]

M. Benaida, K. E. Aiadi, S. Mahtout, S. Djaadi, W. Rammal, M. Harb. Growth behavior and electronic properties of Gen + 1 and AsGen (n = 1–20) clusters: a DFT study. J. Semicond., 2019, 40(3): 032101. doi: 10.1088/1674-4926/40/3/032101

[13]

Dahua Ren, Baoyan Xiang, Cheng Hu, Kai Qian, Xinlu Cheng. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations. J. Semicond., 2018, 39(4): 042002. doi: 10.1088/1674-4926/39/4/042002

[14]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[15]

Zhang Yufei, Guo Zhiyou, Gao Xiaoqi, Cao Dongxing, Dai Yunxiao, Zhao Hongtao. First-principles of wurtzite ZnO (0001) and (000ī) surface structures. J. Semicond., 2010, 31(8): 082001. doi: 10.1088/1674-4926/31/8/082001

[16]

Zuo Chunying, Wen Jing, Zhong Cheng. First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J. Semicond., 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

[17]

Haitao Li, Jun Qian, Fangfang Han, Tinghui Li. Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure. J. Semicond., 2013, 34(7): 072003. doi: 10.1088/1674-4926/34/7/072003

[18]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[19]

Zhou Maoxiu, Zhao Qiang, Zhang Wei, Liu Qi, Dai Yuehua. The conductive path in HfO2: first principles study. J. Semicond., 2012, 33(7): 072002. doi: 10.1088/1674-4926/33/7/072002

[20]

Si Panpan, Su Xiyu, Hou Qinying, Li Yadong, Cheng Wei. First-principles calculation of the electronic band of ZnO doped with C. J. Semicond., 2009, 30(5): 052001. doi: 10.1088/1674-4926/30/5/052001

Search

Advanced Search >>

GET CITATION

A Nabi, Z Akhtar, T Iqbal, A Ali, A Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations[J]. J. Semicond., 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001.

Export: BibTex EndNote

Article Metrics

Article views: 1923 Times PDF downloads: 41 Times Cited by: 0 Times

History

Manuscript received: 12 September 2016 Manuscript revised: 01 November 2016 Online: Published: 01 July 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误