J. Semicond. > Volume 38 > Issue 8 > Article Number: 082001

ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis

Utsa Das 1, 2, and Partha P. Pal 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: ZnO1-xTex ternary alloys have great potential to work as a photovoltaic (PV) absorber in solar cells. ZnO1-xSx is also a ZnO based alloy that have uses in solar cells. In this paper we report the comparative study of various parameters of ZnO1-xTex and ZnO1-xSx for selecting it to be a competent material for solar cell applications. The parameters are mainly being calculated using the well-known VCA (virtual crystal approximation) and VBAC (Valence Band Anti-Crossing) model. It was certainly being analysed that the incorporation of Te atoms produces a high band gap lower than S atoms in the host ZnO material. The spin-orbit splitting energy value of ZnO1-xTex was found to be higher than that of ZnO1-xSx. Beside this, the strain effects are also higher in ZnO1-xTex than ZnO1-xSx. The remarkable notifying result which the paper is reporting is that at a higher percentage of Te atoms in ZnO1-xTex, the spin-orbit splitting energy value rises above the band gap value, which signifies a very less internal carrier recombination that decreases the leakage current and increases the efficiency of the solar cell. Moreover, it also covers a wide wavelength range compared to ZnO1-xSx.

Key words: VBAC modelsemiconductor alloysband gapspin-orbit splitting energystrainsolar cell

Abstract: ZnO1-xTex ternary alloys have great potential to work as a photovoltaic (PV) absorber in solar cells. ZnO1-xSx is also a ZnO based alloy that have uses in solar cells. In this paper we report the comparative study of various parameters of ZnO1-xTex and ZnO1-xSx for selecting it to be a competent material for solar cell applications. The parameters are mainly being calculated using the well-known VCA (virtual crystal approximation) and VBAC (Valence Band Anti-Crossing) model. It was certainly being analysed that the incorporation of Te atoms produces a high band gap lower than S atoms in the host ZnO material. The spin-orbit splitting energy value of ZnO1-xTex was found to be higher than that of ZnO1-xSx. Beside this, the strain effects are also higher in ZnO1-xTex than ZnO1-xSx. The remarkable notifying result which the paper is reporting is that at a higher percentage of Te atoms in ZnO1-xTex, the spin-orbit splitting energy value rises above the band gap value, which signifies a very less internal carrier recombination that decreases the leakage current and increases the efficiency of the solar cell. Moreover, it also covers a wide wavelength range compared to ZnO1-xSx.

Key words: VBAC modelsemiconductor alloysband gapspin-orbit splitting energystrainsolar cell



References:

[1]

Weł na M, Kudrawiec R, Nabetani Y. Effects of a semiconductor matrix on the band anticrossing in dilute group Ⅱ-Ⅵ oxides[J]. Semicond Sci Technol, 2015, 30: 085018. doi: 10.1088/0268-1242/30/8/085018

[2]

He Y B, Zhang L, Wang L H. Structural and optical properties of single-phase ZnO1-xSx alloy films epitaxially grown by pulsed laser deposition[J]. J Alloys Compounds, 2014, 587: 369. doi: 10.1016/j.jallcom.2013.10.201

[3]

Ramanathan S, Patibandla S, Bandyopadhyay S. Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires:evidence of the quantum confined Stark effect[J]. J Mater Sci:Mater Electron, 2006, 17: 651. doi: 10.1007/s10854-006-0021-4

[4]

Jaquez M, Yu K M, Ting M. Growth and characterization of ZnO1-xSx highly mismatched alloys over the entire composition[J]. J Appl Phys, 2015, 118: 215702. doi: 10.1063/1.4936551

[5]

Gonfa B A, da Cunha A F, Timmons A B. ZnO nanostructures for photovoltaic cells[J]. Phys Stat Solidi B, 2010, 247: 1633. doi: 10.1002/pssb.v247:7

[6]

Gondek E, Djaoued Y, Priya S. Organic hybrid solar cells——influence of ZnO nanoparticles on the photovoltaic efficiency[J]. Mater Lett, 2014, 131: 259. doi: 10.1016/j.matlet.2014.06.007

[7]

Ting M, dos Reis R, Jaquez M. Electronic band structure of ZnO-rich highly mismatched ZnO1-xTex alloys[J]. Appl Phys Lett, 2015, 106: 092101. doi: 10.1063/1.4913840

[8]

Wang W, Bowen W, Spanninga S. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy[J]. J Electron Mater, 2009, 38: 119. doi: 10.1007/s11664-008-0577-2

[9]

Nabetani Y, Okuno T, Aoki K. Photoluminescence properties of ZnTeO and ZnSeO alloys with dilute O concentrations[J]. Phys Status Solidi C, 2006, 3: 1078. doi: 10.1002/(ISSN)1610-1642

[10]

Lin A S, Wang W, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination[J]. J Appl Phys, 2009, 105: 064512. doi: 10.1063/1.3093962

[11]

Wang W, Lin A S, Phillips J D. Generation and recombination rates at ZnTe:O intermediate band states[J]. Appl Phys Lett, 2009, 95: 261107. doi: 10.1063/1.3274131

[12]

Thankalekshmi R R, Rastogi A C. Structure and optical band gap of ZnO1-xSx thin films synthesized by chemical spray pyrolysis for application in solar cells[J]. J Appl Phys, 2012, 112: 063708. doi: 10.1063/1.4754014

[13]

Meyer B K, Polity A, Farangis B. Structural properties and bandgap bowing of ZnO1-xSx thin films deposited by reactive sputtering[J]. Appl Phys Lett, 2004, 85: 4929. doi: 10.1063/1.1825053

[14]

Wu J Q, Walukiewicz W, Yu K M. Origin of large band-gap bowing in highly mismatched semiconductor alloys[J]. Phys Rev B, 2003, 67: 035207. doi: 10.1103/PhysRevB.67.035207

[15]

Walukiewicz W, Shan W, Yu K M. Interaction of localised electronic states with conduction band:band anti-crossing in Ⅱ-Ⅵ semiconductor ternaries[J]. Phys Rev Lett, 2000, 85: 7.

[16]

Alberi J, Blacksberg , Bell L D. Band anticrossing in highly mismatched Sn_xGe1-x semiconductor alloys[J]. Phys Rev B, 2008, 77: 073202. doi: 10.1103/PhysRevB.77.073202

[17]

Iribarren A, Fernández P, Piqueras J. Recombination processes in Te-doped ZnO microstructures[J]. Phys Status Solidi B, 2014, 251: 683. doi: 10.1002/pssb.201248600

[18]

Vegard L. The constitution of the mixed crystals and the room filling the atoms[J]. Z Phys, 1921, 5: 17. doi: 10.1007/BF01349680

[19]

Gai Y Q, Tang G. Effects of hydrostatic pressures on the ionization and formation energies of dopants in ZnO and ZnTe[J]. Phys Lett A, 2014, 378: 82. doi: 10.1016/j.physleta.2013.10.041

[20]

Janetzko F, Jug K. Miscibility of zinc chalcogenides[J]. J Phys Chem A, 2004, 108: 5449. doi: 10.1021/jp040061+

[21]

Ashrafi A, Jagadish C. Review of zincblende ZnO:stability of metastable ZnO phases[J]. J Appl Phys, 2007, 102: 071101. doi: 10.1063/1.2787957

[22]

Samajdar D P, Das T D, Dhar S. Valence band anticrossing for Ga Sb1-xBix and Ga Sb1-xBix using k. p method. Mater Sci Semicond Process, 2015, 40: 539

[23]

Niv A, Abrams Z R, Gharghi M. Overcoming the bandgap limitation on solar cell materials[J]. Appl Phys Lett, 2012, 100: 083901. doi: 10.1063/1.3682101

[24]

Sweeney S J, Jin S R. Bismide-nitride alloys:promising for efficient light emitting devices in the near-and mid-infrared[J]. J Appl Phys, 2013, 113: 043110. doi: 10.1063/1.4789624

[1]

Weł na M, Kudrawiec R, Nabetani Y. Effects of a semiconductor matrix on the band anticrossing in dilute group Ⅱ-Ⅵ oxides[J]. Semicond Sci Technol, 2015, 30: 085018. doi: 10.1088/0268-1242/30/8/085018

[2]

He Y B, Zhang L, Wang L H. Structural and optical properties of single-phase ZnO1-xSx alloy films epitaxially grown by pulsed laser deposition[J]. J Alloys Compounds, 2014, 587: 369. doi: 10.1016/j.jallcom.2013.10.201

[3]

Ramanathan S, Patibandla S, Bandyopadhyay S. Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires:evidence of the quantum confined Stark effect[J]. J Mater Sci:Mater Electron, 2006, 17: 651. doi: 10.1007/s10854-006-0021-4

[4]

Jaquez M, Yu K M, Ting M. Growth and characterization of ZnO1-xSx highly mismatched alloys over the entire composition[J]. J Appl Phys, 2015, 118: 215702. doi: 10.1063/1.4936551

[5]

Gonfa B A, da Cunha A F, Timmons A B. ZnO nanostructures for photovoltaic cells[J]. Phys Stat Solidi B, 2010, 247: 1633. doi: 10.1002/pssb.v247:7

[6]

Gondek E, Djaoued Y, Priya S. Organic hybrid solar cells——influence of ZnO nanoparticles on the photovoltaic efficiency[J]. Mater Lett, 2014, 131: 259. doi: 10.1016/j.matlet.2014.06.007

[7]

Ting M, dos Reis R, Jaquez M. Electronic band structure of ZnO-rich highly mismatched ZnO1-xTex alloys[J]. Appl Phys Lett, 2015, 106: 092101. doi: 10.1063/1.4913840

[8]

Wang W, Bowen W, Spanninga S. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy[J]. J Electron Mater, 2009, 38: 119. doi: 10.1007/s11664-008-0577-2

[9]

Nabetani Y, Okuno T, Aoki K. Photoluminescence properties of ZnTeO and ZnSeO alloys with dilute O concentrations[J]. Phys Status Solidi C, 2006, 3: 1078. doi: 10.1002/(ISSN)1610-1642

[10]

Lin A S, Wang W, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination[J]. J Appl Phys, 2009, 105: 064512. doi: 10.1063/1.3093962

[11]

Wang W, Lin A S, Phillips J D. Generation and recombination rates at ZnTe:O intermediate band states[J]. Appl Phys Lett, 2009, 95: 261107. doi: 10.1063/1.3274131

[12]

Thankalekshmi R R, Rastogi A C. Structure and optical band gap of ZnO1-xSx thin films synthesized by chemical spray pyrolysis for application in solar cells[J]. J Appl Phys, 2012, 112: 063708. doi: 10.1063/1.4754014

[13]

Meyer B K, Polity A, Farangis B. Structural properties and bandgap bowing of ZnO1-xSx thin films deposited by reactive sputtering[J]. Appl Phys Lett, 2004, 85: 4929. doi: 10.1063/1.1825053

[14]

Wu J Q, Walukiewicz W, Yu K M. Origin of large band-gap bowing in highly mismatched semiconductor alloys[J]. Phys Rev B, 2003, 67: 035207. doi: 10.1103/PhysRevB.67.035207

[15]

Walukiewicz W, Shan W, Yu K M. Interaction of localised electronic states with conduction band:band anti-crossing in Ⅱ-Ⅵ semiconductor ternaries[J]. Phys Rev Lett, 2000, 85: 7.

[16]

Alberi J, Blacksberg , Bell L D. Band anticrossing in highly mismatched Sn_xGe1-x semiconductor alloys[J]. Phys Rev B, 2008, 77: 073202. doi: 10.1103/PhysRevB.77.073202

[17]

Iribarren A, Fernández P, Piqueras J. Recombination processes in Te-doped ZnO microstructures[J]. Phys Status Solidi B, 2014, 251: 683. doi: 10.1002/pssb.201248600

[18]

Vegard L. The constitution of the mixed crystals and the room filling the atoms[J]. Z Phys, 1921, 5: 17. doi: 10.1007/BF01349680

[19]

Gai Y Q, Tang G. Effects of hydrostatic pressures on the ionization and formation energies of dopants in ZnO and ZnTe[J]. Phys Lett A, 2014, 378: 82. doi: 10.1016/j.physleta.2013.10.041

[20]

Janetzko F, Jug K. Miscibility of zinc chalcogenides[J]. J Phys Chem A, 2004, 108: 5449. doi: 10.1021/jp040061+

[21]

Ashrafi A, Jagadish C. Review of zincblende ZnO:stability of metastable ZnO phases[J]. J Appl Phys, 2007, 102: 071101. doi: 10.1063/1.2787957

[22]

Samajdar D P, Das T D, Dhar S. Valence band anticrossing for Ga Sb1-xBix and Ga Sb1-xBix using k. p method. Mater Sci Semicond Process, 2015, 40: 539

[23]

Niv A, Abrams Z R, Gharghi M. Overcoming the bandgap limitation on solar cell materials[J]. Appl Phys Lett, 2012, 100: 083901. doi: 10.1063/1.3682101

[24]

Sweeney S J, Jin S R. Bismide-nitride alloys:promising for efficient light emitting devices in the near-and mid-infrared[J]. J Appl Phys, 2013, 113: 043110. doi: 10.1063/1.4789624

[1]

Shuwei Zhang, Xiangbo Zeng. Influence of band gap of p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density in thin-film silicon solar cells. J. Semicond., 2017, 38(11): 114007. doi: 10.1088/1674-4926/38/11/114007

[2]

Liping Qiao, Changchun Chai, Yintang Yang, Xinhai Yu, Chunlei Shi. Strain effects on band structure of wurtzite ZnO: a GGA + U study. J. Semicond., 2014, 35(7): 073004. doi: 10.1088/1674-4926/35/7/073004

[3]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[4]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[5]

Zhang Jicai, Wang Jianfeng, Wang Yutian, Yang Hui. Strain State of AlGaN. J. Semicond., 2005, 26(S1): 1.

[6]

Wu Tao, Du Gang, Liu Xiaoyan, Kang Jinfeng, Han Ruqi. Characteristics of Nanometer MOSFETs with Mechanical Strain in the Channel. J. Semicond., 2006, 27(S1): 415.

[7]

Liang Shuang, Lu Yanwu. Strain Distribution and Piezoelectric Effect in GaN/AlN Quantum Dots. J. Semicond., 2007, 28(1): 42.

[8]

Liu Yumin, Yu Zhongyuan, Yang Hongbo, Huang Yongzhen. Influences of Differently Shaped Quantum Dots on Elastic Strain Field Distributions. J. Semicond., 2005, 26(12): 2355.

[9]

Huang Zhanchao, Wu Huizhen, Lao Yanfeng, Liu Cheng, Cao Meng. XRD Reciprocal Space Mapping of InAsP/InGaAsP/InP Strain Epilayers. J. Semicond., 2006, 27(S1): 58.

[10]

Yang Hongbin, Fan Yongliang, Zhang Xiangjiu. Strain and Annealing Effect of SiGe/Si Heterostructure in Limited Area Grown by MBE. J. Semicond., 2007, 28(8): 1226.

[11]

Xuefen Cai, Peng Zhang, Su-Huai Wei. Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study. J. Semicond., 2019, 40(9): 092101. doi: 10.1088/1674-4926/40/9/092101

[12]

Jianjun Song, He Zhu, Jinyong Yang, Heming Zhang, Rongxi Xuan, Huiyong Hu. Averaged hole mobility model of biaxially strained Si. J. Semicond., 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003

[13]

Zheng Dongmei, Wang Zongchi, Xiao Boqi. Correlated electron-hole transitions in wurtzite GaN quantum dots: the effects of strain and hydrostatic pressure. J. Semicond., 2012, 33(5): 052002. doi: 10.1088/1674-4926/33/5/052002

[14]

Han Wang, Shilong Li, Honglou Zhen, Xiaofei Nie, Gaoshan Huang, Yongfeng Mei, Wei Lu. Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors. J. Semicond., 2017, 38(5): 054006. doi: 10.1088/1674-4926/38/5/054006

[15]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

[16]

Zhang Lucheng, Shen Hui. Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell. J. Semicond., 2009, 30(7): 074007. doi: 10.1088/1674-4926/30/7/074007

[17]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[18]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

[19]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[20]

Pan Dai, Shulong Lu, Lian Ji, Wei He, Lifeng Bian, Hui Yang, M. Arimochi, H. Yoshida, S. Uchida, M. Ikeda. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy. J. Semicond., 2013, 34(10): 104006. doi: 10.1088/1674-4926/34/10/104006

Search

Advanced Search >>

GET CITATION

U Das, P P Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis[J]. J. Semicond., 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001.

Export: BibTex EndNote

Article Metrics

Article views: 2044 Times PDF downloads: 25 Times Cited by: 0 Times

History

Manuscript received: 01 October 2016 Manuscript revised: 04 March 2017 Online: Published: 01 August 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误