J. Semicond. > Volume 38 > Issue 9 > Article Number: 092001

Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell

S.R. Routray and T.R. Lenka ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The effect of doped-ZnO transparent conductive oxide (TCO) with metal (Ag)-fingers contact on GaN/InGaN solar cell is investigated through numerical simulations. An optical and electrical analysis of different dopant elements (such as B, Al, Ga, In and Sn) with ZnO as a top TCO layer is studied. A comparative analysis of metal square pad electrode, metal grid pattern electrode and metal-finger/ZnO type electrodes are taken into consideration to ensure the effect of anti-reflectivity by ZnO. The effect of thickness of ZnO and i-InGaN layer on performance of solar cell is also studied in detail. The proposed solar cell structure with Ag-fingers/ZnO:Al as top contact electrode shows interesting device characteristics compared to other dopants and metal top electrodes. The device achieves open circuit voltage~2.525 V, short circuit current~4.256 mA/cm2, fill factor~87.86% and efficiency~9.22% under 1 Sun, air mass 1.5 global illumination.

Key words: Ag-finger/doped-ZnO TCOresistivitydopantsGaN/InGaN solar cell

Abstract: The effect of doped-ZnO transparent conductive oxide (TCO) with metal (Ag)-fingers contact on GaN/InGaN solar cell is investigated through numerical simulations. An optical and electrical analysis of different dopant elements (such as B, Al, Ga, In and Sn) with ZnO as a top TCO layer is studied. A comparative analysis of metal square pad electrode, metal grid pattern electrode and metal-finger/ZnO type electrodes are taken into consideration to ensure the effect of anti-reflectivity by ZnO. The effect of thickness of ZnO and i-InGaN layer on performance of solar cell is also studied in detail. The proposed solar cell structure with Ag-fingers/ZnO:Al as top contact electrode shows interesting device characteristics compared to other dopants and metal top electrodes. The device achieves open circuit voltage~2.525 V, short circuit current~4.256 mA/cm2, fill factor~87.86% and efficiency~9.22% under 1 Sun, air mass 1.5 global illumination.

Key words: Ag-finger/doped-ZnO TCOresistivitydopantsGaN/InGaN solar cell



References:

[1]

Mclaughlin D V P, Pearce J M. Progress in indium gallium nitride materials for solar photovoltaic energy conversion[J]. Metall Mater Trans A, 2013, 44: 1947. doi: 10.1007/s11661-013-1622-1

[2]

Jiang L R, Liu J P, Tian A Q. GaN-based green laser diodes[J]. J Semicond, 2016, 37(11): 111001. doi: 10.1088/1674-4926/37/11/111001

[3]

Zhang H, Messanvi A, Durand C. InGaN/GaN core/shell nanowires for visible to ultraviolet range photodetection[J]. Phys Status Solidi Appl Mater Sci, 2016, 940(4): 936.

[4]

Qian F, Li Y, Gradecak S. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers[J]. Nat Mater, 2008, 7(9): 701. doi: 10.1038/nmat2253

[5]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (version 48)[J]. Prog Photovolt Res, 2016, 24(7): 905. doi: 10.1002/pip.v24.7

[6]

Lin M, Xu Y X, Zhang J H. Hybrid functional calculations on the band gap bowing parameters of InxGa1-xN[J]. J Semicond, 2016, 37(4): 42001. doi: 10.1088/1674-4926/37/4/042001

[7]

Jing L, Xiao H L, Wang X L. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate[J]. J Semicond, 2013, 34(12): 24004.

[8]

Wu J, Walukiewicz W, Yu K M. Superior radiation resistance of In1-xGaxN alloys:full-solar-spectrum photovoltaic material system[J]. J Appl Phys, 2003, 94(10): 6477. doi: 10.1063/1.1618353

[9]

Hamzaoui H, Bouazzi A S, Rezig B. Theoretical possibilities of InxGa1-xN tandem PV structures[J]. Sol Energy Mater Sol Cells, 2005, 87(1-4): 595. doi: 10.1016/j.solmat.2004.08.020

[10]

Chang J Y, Yen S H, Chang Y A. Numerical investigation of high-efficiency InGaN-based multi-junction solar cell[J]. IEEE Trans Electron Devices, 2013, 60(12): 4140. doi: 10.1109/TED.2013.2285573

[11]

Cai X, Wang Y, Chen B. Investigation of InGaN p-i-n homojunction and heterojunction solar cells[J]. IEEE Photon Technol Lett, 2013, 25(1): 59. doi: 10.1109/LPT.2012.2227702

[12]

Jani O, Honsberg C, Huang Y. Design, growth, fabrication and characterization of high-band gap InGaN/GaN solar cells[J]. WCPEC, 2006: 20.

[13]

Liou B W. InxGa1-xN-GaN-based solar cells with a multiple quantum-well structure on SiCN-Si (111) substrates[J]. Thin Solid Film, 2011, 520(3): 1084. doi: 10.1016/j.tsf.2011.01.086

[14]

Bhuiyan A G, Sugita K, Hashimoto A. InGaN solar cells:Present state of the art and important challenges[J]. IEEE J Photovoltaics, 2012, 2(3): 276. doi: 10.1109/JPHOTOV.2012.2193384

[15]

Chang J Y, Kuo Y K. Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells[J]. IEEE Electron Device Lett, 2011, 32(7): 937. doi: 10.1109/LED.2011.2150195

[16]

Dickerson J R, Pantzas K, Ougazzaden A. Polarization-induced electric fields make robust n-GaN/i-InGaN/p-GaN solar cells[J]. IEEE Electron Device Lett, 2013, 34(3): 363. doi: 10.1109/LED.2012.2237376

[17]

Hartlieb P J, Roskowski A, Davis R F. Chemical, electrical, and structural properties of Ni/Au contacts on chemical vapor cleaned p-type GaN[J]. J Appl Phys, 2002, 91(11): 9151. doi: 10.1063/1.1471578

[18]

Arai T, Sueyoshi H, Koide Y. Development of Pt-based ohmic contact materials for p-type GaN[J]. J Appl Phys, 2001, 89(5): 2826. doi: 10.1063/1.1344578

[19]

Zhou L, Lanford W, Ping A T. Low resistance Ti/Pt/Au ohmic contacts to p-type GaN[J]. Appl Phys Lett, 2000, 76(23): 3451. doi: 10.1063/1.126674

[20]

Kim T W, Choo D C, No Y S. High work function of Al-doped zinc-oxide thin films as transparent conductive anodes in organic light-emitting devices[J]. Appl Surf Sci, 2006, 253(4): 1917. doi: 10.1016/j.apsusc.2006.03.032

[21]

Minami T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semi Sci Technol, 2005, 20(4): 35. doi: 10.1088/0268-1242/20/4/004

[22]

Krc C J, Malmstrom J, Edoff M. The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In, Ga)Se2 solar cells[J]. Thin solid films, 2007, 515(15): 5968. doi: 10.1016/j.tsf.2006.12.093

[23]

Hartnagel H L, Dawar A L, Jain A K, et al. Semiconducting transparent thin films. Bristol:Institute of Physics Publishing, 1995

[24]

Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes[J]. Nat Photonics, 2012, 6: 809. doi: 10.1038/nphoton.2012.282

[25]

Tun C J, Sheu J K, Pong B J. Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer[J]. IEEE Photonics Technol Lett, 2006, 18(1): 274. doi: 10.1109/LPT.2005.861987

[26]

Kang D W, Kwon J Y, Shim J. Highly conductive GaN anti-reflection layer at transparent conducting oxide/Si interface for silicon thin film solar cells[J]. Sol Energy Mater Sol C, 2012, 105: 317. doi: 10.1016/j.solmat.2012.06.041

[27]

Victory Device User's Manual. California: Silvaco International, 2015

[28]

Maldonado F, Stashans A. Al-doped ZnO:electronic, electrical and structural properties[J]. J Phys Chem Solids, 2010, 71(5): 784. doi: 10.1016/j.jpcs.2010.02.001

[29]

Kumar V, Singh R G, Purohit L P. Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline[J]. J Mater Sci Technol, 2011, 27(6): 481. doi: 10.1016/S1005-0302(11)60095-9

[30]

Hsieh J H, Chang C K, Hsieh H H. Electrical and optical properties of gallium-doped zinc oxide thin films prepared by ion-beam-assisted deposition[J]. Vaccum, 2015, 118: 43. doi: 10.1016/j.vacuum.2015.02.034

[31]

Biswal R, Maldonado A, Vega-Pérez J. Indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique starting from zinc acetylacetonate and indium chloride[J]. Materials, 2014, 7: 5038. doi: 10.3390/ma7075038

[32]

Bedia F Z, Bedia A, Aillerie M. Structural, optical and electrical properties of Sn-doped zinc oxide transparent films interesting for organic solar cells (OSCs)[J]. TMREES15, 2015: 539.

[33]

Liu Y, Li Y, Zeng H. ZnO-based transparent conductive thin films:doping, performance, and processing[J]. J Nanomater, 2013, 2013: 1.

[34]

Holec D, Costa P M F J, Kappers M J. Critical thickness calculations for InGaN/GaN[J]. J Cryst Growth, 2007, 303: 314. doi: 10.1016/j.jcrysgro.2006.12.054

[35]

Kuo Y K, Chang J Y, Shih Y H. Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN p-i-n solar cell[J]. IEEE J Quantum Electron, 2012, 48(3): 367. doi: 10.1109/JQE.2011.2181972

[36]

Walukiewicz W, Ager J W, Yu K M. Structure and electronic properties of InN and in-rich group Ⅲ-nitride alloys[J]. J Phys D, 2006, 39: R83. doi: 10.1088/0022-3727/39/5/R01

[37]

Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures[J]. Appl Phys Lett, 2002, 80(7): 1204. doi: 10.1063/1.1448668

[38]

Brown G F, Ager J W, Walukiewicz W. Finite element simulations of compositionally graded InGaN solar cells[J]. Sol Energy Mater Sol Cells, 2010, 94(3): 478. doi: 10.1016/j.solmat.2009.11.010

[39]

Li Z Q, Lestradet M, Xiao Y G. Effects of polarization charge on the photovoltaic properties of InGaN solar cells[J]. Phys Status Solidi Appl Mater Sci, 2011, 208(4): 928. doi: 10.1002/pssa.v208.4

[1]

Mclaughlin D V P, Pearce J M. Progress in indium gallium nitride materials for solar photovoltaic energy conversion[J]. Metall Mater Trans A, 2013, 44: 1947. doi: 10.1007/s11661-013-1622-1

[2]

Jiang L R, Liu J P, Tian A Q. GaN-based green laser diodes[J]. J Semicond, 2016, 37(11): 111001. doi: 10.1088/1674-4926/37/11/111001

[3]

Zhang H, Messanvi A, Durand C. InGaN/GaN core/shell nanowires for visible to ultraviolet range photodetection[J]. Phys Status Solidi Appl Mater Sci, 2016, 940(4): 936.

[4]

Qian F, Li Y, Gradecak S. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers[J]. Nat Mater, 2008, 7(9): 701. doi: 10.1038/nmat2253

[5]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (version 48)[J]. Prog Photovolt Res, 2016, 24(7): 905. doi: 10.1002/pip.v24.7

[6]

Lin M, Xu Y X, Zhang J H. Hybrid functional calculations on the band gap bowing parameters of InxGa1-xN[J]. J Semicond, 2016, 37(4): 42001. doi: 10.1088/1674-4926/37/4/042001

[7]

Jing L, Xiao H L, Wang X L. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate[J]. J Semicond, 2013, 34(12): 24004.

[8]

Wu J, Walukiewicz W, Yu K M. Superior radiation resistance of In1-xGaxN alloys:full-solar-spectrum photovoltaic material system[J]. J Appl Phys, 2003, 94(10): 6477. doi: 10.1063/1.1618353

[9]

Hamzaoui H, Bouazzi A S, Rezig B. Theoretical possibilities of InxGa1-xN tandem PV structures[J]. Sol Energy Mater Sol Cells, 2005, 87(1-4): 595. doi: 10.1016/j.solmat.2004.08.020

[10]

Chang J Y, Yen S H, Chang Y A. Numerical investigation of high-efficiency InGaN-based multi-junction solar cell[J]. IEEE Trans Electron Devices, 2013, 60(12): 4140. doi: 10.1109/TED.2013.2285573

[11]

Cai X, Wang Y, Chen B. Investigation of InGaN p-i-n homojunction and heterojunction solar cells[J]. IEEE Photon Technol Lett, 2013, 25(1): 59. doi: 10.1109/LPT.2012.2227702

[12]

Jani O, Honsberg C, Huang Y. Design, growth, fabrication and characterization of high-band gap InGaN/GaN solar cells[J]. WCPEC, 2006: 20.

[13]

Liou B W. InxGa1-xN-GaN-based solar cells with a multiple quantum-well structure on SiCN-Si (111) substrates[J]. Thin Solid Film, 2011, 520(3): 1084. doi: 10.1016/j.tsf.2011.01.086

[14]

Bhuiyan A G, Sugita K, Hashimoto A. InGaN solar cells:Present state of the art and important challenges[J]. IEEE J Photovoltaics, 2012, 2(3): 276. doi: 10.1109/JPHOTOV.2012.2193384

[15]

Chang J Y, Kuo Y K. Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells[J]. IEEE Electron Device Lett, 2011, 32(7): 937. doi: 10.1109/LED.2011.2150195

[16]

Dickerson J R, Pantzas K, Ougazzaden A. Polarization-induced electric fields make robust n-GaN/i-InGaN/p-GaN solar cells[J]. IEEE Electron Device Lett, 2013, 34(3): 363. doi: 10.1109/LED.2012.2237376

[17]

Hartlieb P J, Roskowski A, Davis R F. Chemical, electrical, and structural properties of Ni/Au contacts on chemical vapor cleaned p-type GaN[J]. J Appl Phys, 2002, 91(11): 9151. doi: 10.1063/1.1471578

[18]

Arai T, Sueyoshi H, Koide Y. Development of Pt-based ohmic contact materials for p-type GaN[J]. J Appl Phys, 2001, 89(5): 2826. doi: 10.1063/1.1344578

[19]

Zhou L, Lanford W, Ping A T. Low resistance Ti/Pt/Au ohmic contacts to p-type GaN[J]. Appl Phys Lett, 2000, 76(23): 3451. doi: 10.1063/1.126674

[20]

Kim T W, Choo D C, No Y S. High work function of Al-doped zinc-oxide thin films as transparent conductive anodes in organic light-emitting devices[J]. Appl Surf Sci, 2006, 253(4): 1917. doi: 10.1016/j.apsusc.2006.03.032

[21]

Minami T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semi Sci Technol, 2005, 20(4): 35. doi: 10.1088/0268-1242/20/4/004

[22]

Krc C J, Malmstrom J, Edoff M. The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In, Ga)Se2 solar cells[J]. Thin solid films, 2007, 515(15): 5968. doi: 10.1016/j.tsf.2006.12.093

[23]

Hartnagel H L, Dawar A L, Jain A K, et al. Semiconducting transparent thin films. Bristol:Institute of Physics Publishing, 1995

[24]

Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes[J]. Nat Photonics, 2012, 6: 809. doi: 10.1038/nphoton.2012.282

[25]

Tun C J, Sheu J K, Pong B J. Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer[J]. IEEE Photonics Technol Lett, 2006, 18(1): 274. doi: 10.1109/LPT.2005.861987

[26]

Kang D W, Kwon J Y, Shim J. Highly conductive GaN anti-reflection layer at transparent conducting oxide/Si interface for silicon thin film solar cells[J]. Sol Energy Mater Sol C, 2012, 105: 317. doi: 10.1016/j.solmat.2012.06.041

[27]

Victory Device User's Manual. California: Silvaco International, 2015

[28]

Maldonado F, Stashans A. Al-doped ZnO:electronic, electrical and structural properties[J]. J Phys Chem Solids, 2010, 71(5): 784. doi: 10.1016/j.jpcs.2010.02.001

[29]

Kumar V, Singh R G, Purohit L P. Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline[J]. J Mater Sci Technol, 2011, 27(6): 481. doi: 10.1016/S1005-0302(11)60095-9

[30]

Hsieh J H, Chang C K, Hsieh H H. Electrical and optical properties of gallium-doped zinc oxide thin films prepared by ion-beam-assisted deposition[J]. Vaccum, 2015, 118: 43. doi: 10.1016/j.vacuum.2015.02.034

[31]

Biswal R, Maldonado A, Vega-Pérez J. Indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique starting from zinc acetylacetonate and indium chloride[J]. Materials, 2014, 7: 5038. doi: 10.3390/ma7075038

[32]

Bedia F Z, Bedia A, Aillerie M. Structural, optical and electrical properties of Sn-doped zinc oxide transparent films interesting for organic solar cells (OSCs)[J]. TMREES15, 2015: 539.

[33]

Liu Y, Li Y, Zeng H. ZnO-based transparent conductive thin films:doping, performance, and processing[J]. J Nanomater, 2013, 2013: 1.

[34]

Holec D, Costa P M F J, Kappers M J. Critical thickness calculations for InGaN/GaN[J]. J Cryst Growth, 2007, 303: 314. doi: 10.1016/j.jcrysgro.2006.12.054

[35]

Kuo Y K, Chang J Y, Shih Y H. Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN p-i-n solar cell[J]. IEEE J Quantum Electron, 2012, 48(3): 367. doi: 10.1109/JQE.2011.2181972

[36]

Walukiewicz W, Ager J W, Yu K M. Structure and electronic properties of InN and in-rich group Ⅲ-nitride alloys[J]. J Phys D, 2006, 39: R83. doi: 10.1088/0022-3727/39/5/R01

[37]

Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures[J]. Appl Phys Lett, 2002, 80(7): 1204. doi: 10.1063/1.1448668

[38]

Brown G F, Ager J W, Walukiewicz W. Finite element simulations of compositionally graded InGaN solar cells[J]. Sol Energy Mater Sol Cells, 2010, 94(3): 478. doi: 10.1016/j.solmat.2009.11.010

[39]

Li Z Q, Lestradet M, Xiao Y G. Effects of polarization charge on the photovoltaic properties of InGaN solar cells[J]. Phys Status Solidi Appl Mater Sci, 2011, 208(4): 928. doi: 10.1002/pssa.v208.4

2017年中国高校科技期刊“优秀团队及优秀个人”入选名单.xlsx

[1]

Fang Cebao, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Ran Junxue, Li Chengji, Luo Weijun, Yang Cuibai, Zeng Yiping, Li Jinmin. Resistivity Measurement of High-Resistivity GaN Film. J. Semicond., 2007, 28(S1): 536.

[2]

N. Boukhenoufa, R. Mahamdi, D. Rechem. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol-gel dip coating process. J. Semicond., 2016, 37(11): 113001. doi: 10.1088/1674-4926/37/11/113001

[3]

M. Benhaliliba, A. Tiburcio-Silver, A. Avila-Garcia, A. Tavira, Y. S. Ocak, M. S. Aida, C. E. Benouis. The sprayed ZnO films: nanostructures and physical parameters. J. Semicond., 2015, 36(8): 083001. doi: 10.1088/1674-4926/36/8/083001

[4]

Jijun Zhang, Linjun Wang, Jiahua Min, Kaifeng Qin, Zhubin Shi, Xiaoyan Liang. Te vapor annealing of indium-doped CdMnTe crystals. J. Semicond., 2013, 34(3): 033002. doi: 10.1088/1674-4926/34/3/033002

[5]

Jiahong Zhang, Qingquan Liu, Yixian Ge, Fang Gu, Min Li, Xiaoli Mao, Hongxia Cao. Extraction of interface state density and resistivity of suspended p-type silicon nanobridges. J. Semicond., 2013, 34(5): 052002. doi: 10.1088/1674-4926/34/5/052002

[6]

Fang Cebao, Wang Xiaoliang, Liu Chao, Hu Guoxin, Wang Junxi, Li Jianping, Wang Cuimei, Li Chengji, Zeng Yiping, Li Jinmin. High Resistivity GaN Film Grown by MOCVD. J. Semicond., 2005, 26(S1): 91.

[7]

Zhang Jijun, Jie Wanqi. Growth and Properties of Cd0.8Mn0.2Te Crystal. J. Semicond., 2006, 27(6): 1026.

[8]

Zhu Xiaming, Wu Huizhen, Wang Shuangjiang, Zhang Yingying, Cai Chunfeng, Si Jianxiao, Yuan Zijian, Du Xiaoyang, Dong Shurong. Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors. J. Semicond., 2009, 30(3): 033001. doi: 10.1088/1674-4926/30/3/033001

[9]

Zhou Xiaowei, Li Peixian, Xu Shengrui, Hao Yue. Growth and electrical properties of high-quality Mg-doped p-type Al0.2Ga0.8N films. J. Semicond., 2009, 30(4): 043002. doi: 10.1088/1674-4926/30/4/043002

[10]

Xu Jian, Shen Bo, Xu Fujun, Miao Zhenlin, Wang Maojun, Huang Sen, Lu Lin, Pan Yaobo, Yang Zhijian, Zhang Guoyi. Effects of Annealing Pressure of Nucleation Layer on High-Resistivity GaN. J. Semicond., 2007, 28(S1): 127.

[11]

Xu Yadong, Xu Lingyan, Wang Tao, Zha Gangqiang, Fu Li, Jie Wanqi, Sellin P. Charge transport performance of high resistivity CdZnTe crystals doped with In/Al. J. Semicond., 2009, 30(8): 082002. doi: 10.1088/1674-4926/30/8/082002

[12]

Yang Jingjing, He Xiukun, Cao Quanxi, Shi Yashen. Resistivity,Mobility,and Free Carrier Concentration of 6H-SiC Crystal Doped by Nitrogen. J. Semicond., 2006, 27(3): 530.

[13]

Xie Jing, Liu Yunfei, Yang Jinling, Tang Longjuan, Yang Fuhua. Stress and resistivity controls on in situ boron doped LPCVD polysilicon films for high-Q MEMS applications. J. Semicond., 2009, 30(8): 083003. doi: 10.1088/1674-4926/30/8/083003

[14]

Yuanyang Zhao, Jiayu Wang, Jianbin Xu, Fei Yang, Qi Liu, Yuehua Dai. Metal dopants in HfO2-based RRAM:first principle study. J. Semicond., 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002

[15]

Xinliang Chen, Jieming Liu, Jia Fang, Ze Chen, Ying Zhao, Xiaodan Zhang. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells. J. Semicond., 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003

[16]

Zhifang Lei, Guangyu Chen, Shibin Gu, Lingling Dai, Rong Yang, Yuan Meng, Ted Guo, Liwei Li. Development of aluminum-doped ZnO films for a-Si:H/μc-Si:H solar cell applications. J. Semicond., 2013, 34(6): 063004. doi: 10.1088/1674-4926/34/6/063004

[17]

F. A. Mahmoud, Ninet Ahmed. Elaboration of ZnO nanowires by solution based method, characterization and solar cell applications. J. Semicond., 2018, 39(9): 093002. doi: 10.1088/1674-4926/39/9/093002

[18]

Serdar Yilmaz. The geometric resistivity correction factor for several geometrical samples. J. Semicond., 2015, 36(8): 082001. doi: 10.1088/1674-4926/36/8/082001

[19]

Han Xiaoyan, Li Guijun, Hou Guofu, Zhang Xiaodan, Zhang Dekun, Chen Xinliang, Wei Changchun, Sun Jian, Xue Junming, Zhang Jianjun, Zhao Ying, Geng Xinhua. Effect of n Doped Layers in an Amorphous Silicon Top Solar Cell on the Performance of "Micromorph" Tandem Solar Cells. J. Semicond., 2008, 29(8): 1548.

[20]

Tan Weidong, Tang Youqing, Ma Lixing, Luo Hong, Zhang Wenqing, Gao Tao. High Resistivity and Thick Epitaxial Layer of n-Type on Low Resistivity p-Type Substrates. J. Semicond., 2006, 27(S1): 183.

Search

Advanced Search >>

GET CITATION

S R Routray, T R Lenka. Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell[J]. J. Semicond., 2017, 38(9): 092001. doi: 10.1088/1674-4926/38/9/092001.

Export: BibTex EndNote

Article Metrics

Article views: 673 Times PDF downloads: 17 Times Cited by: 0 Times

History

Manuscript received: 20 January 2017 Manuscript revised: 07 March 2017 Online: Published: 01 September 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误