J. Semicond. > Volume 38 > Issue 9 > Article Number: 093003

Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line

Pulkit Sharma , Pratap Singh and Kamlesh Patel ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The impedances of Pi-and T-networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator. The changes in impedances have been analyzed for the properties of various superstrates at the microwave ranges. With graphene on glass and graphene on quartz loadings, the impedances have increased and shifted towards lower frequency more in Pi-network than T-network modeling. This shift has become more prominent at higher frequency for the graphene on glass than graphene on quartz. A little increase in attenuation is found for graphene on glass or quartz than bare glass and quartz. The present study can be extended to obtain attenuation characteristic of any thin film by simple experimental method in the microwave frequencies.

Key words: microstrip lineattenuatorgrapheneS-parametersimpedance

Abstract: The impedances of Pi-and T-networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator. The changes in impedances have been analyzed for the properties of various superstrates at the microwave ranges. With graphene on glass and graphene on quartz loadings, the impedances have increased and shifted towards lower frequency more in Pi-network than T-network modeling. This shift has become more prominent at higher frequency for the graphene on glass than graphene on quartz. A little increase in attenuation is found for graphene on glass or quartz than bare glass and quartz. The present study can be extended to obtain attenuation characteristic of any thin film by simple experimental method in the microwave frequencies.

Key words: microstrip lineattenuatorgrapheneS-parametersimpedance



References:

[1]

Rizzi P A. Microwave engineering passive circuits. Noida:PHI Learning Private Limited, 2013

[2]

Lance A L. Introduction to microwave theory and measurements. New York:McGraw Hill Book Company, 1964

[3]

Pierantoni L. RF nanotechnology——concept, birth, mission, and perspectives[J]. IEEE Microw Mag, 2010, 11: 130.

[4]

Dragoman M, Neculoiu D, Dragoman D. Graphene for microwaves[J]. IEEE Microw Mag, 2010, 11: 81. doi: 10.1109/MMM.2010.938568

[5]

Dragoman M, Cismaru A, Stefanescu A. The electromagnetic properties of graphene in the microwave and millimeter wave spectrum[J]. 43rd European Microwave Conference, Nuremberg, 2013: 530.

[6]

Perruisseau-Carrier J. Graphene for antenna applications, opportunities and challenges from microwaves to THz[J]. Loughborough Antennas & Propagation Conference (LAPC2012), 2012: 1.

[7]

Bozzi M, Pierantoni L, Bellucci S. Applications of graphene at microwave frequencies[J]. Radio Eng, 2012, 24: 661.

[8]

Wu Y, Xu Y, Wang Z. Microwave transmission properties of chemical vapor deposition graphene[J]. Appl Phys Lett, 2012, 101: 053110. doi: 10.1063/1.4737424

[9]

Pozar D M. Microwave engineering. 4th ed. New York:John Wiley & Sons, 2012

[10]

Ghosh S. Network theory:analysis and synthesis. Noida:PHI Learning Private Limited, 2013

[11]

Agilent de-embedding and embedding. S-parameter networks using a vector network analyzer, application note 1364-1. Agilent Technologies, Inc. , USA, 2004, 5980-2784EN

[12]

Wu B, Tuncer H M, Katsounaros A. Microwave absorption and radiation from large-area multilayer CVD graphene[J]. Carbon, 2014, 77: 814. doi: 10.1016/j.carbon.2014.05.086

[13]

http://www.electronics-tutorials.ws/attenuators/attenuator.html

[14]

http://www.odyseus.nildram.co.uk/RFMicrowave_Circuits_Files/Attenuator.pdf

[15]

Collier R J, Skinner D. Microwave measurements. 3rd ed. London:IET, 2007

[16]

Wang Y Y, Ni Z, Yu T. Raman studies of monolayer graphene:the substrate effect[J]. J Phys Chem C, 2008, 112: 10637. doi: 10.1021/jp8008404

[1]

Rizzi P A. Microwave engineering passive circuits. Noida:PHI Learning Private Limited, 2013

[2]

Lance A L. Introduction to microwave theory and measurements. New York:McGraw Hill Book Company, 1964

[3]

Pierantoni L. RF nanotechnology——concept, birth, mission, and perspectives[J]. IEEE Microw Mag, 2010, 11: 130.

[4]

Dragoman M, Neculoiu D, Dragoman D. Graphene for microwaves[J]. IEEE Microw Mag, 2010, 11: 81. doi: 10.1109/MMM.2010.938568

[5]

Dragoman M, Cismaru A, Stefanescu A. The electromagnetic properties of graphene in the microwave and millimeter wave spectrum[J]. 43rd European Microwave Conference, Nuremberg, 2013: 530.

[6]

Perruisseau-Carrier J. Graphene for antenna applications, opportunities and challenges from microwaves to THz[J]. Loughborough Antennas & Propagation Conference (LAPC2012), 2012: 1.

[7]

Bozzi M, Pierantoni L, Bellucci S. Applications of graphene at microwave frequencies[J]. Radio Eng, 2012, 24: 661.

[8]

Wu Y, Xu Y, Wang Z. Microwave transmission properties of chemical vapor deposition graphene[J]. Appl Phys Lett, 2012, 101: 053110. doi: 10.1063/1.4737424

[9]

Pozar D M. Microwave engineering. 4th ed. New York:John Wiley & Sons, 2012

[10]

Ghosh S. Network theory:analysis and synthesis. Noida:PHI Learning Private Limited, 2013

[11]

Agilent de-embedding and embedding. S-parameter networks using a vector network analyzer, application note 1364-1. Agilent Technologies, Inc. , USA, 2004, 5980-2784EN

[12]

Wu B, Tuncer H M, Katsounaros A. Microwave absorption and radiation from large-area multilayer CVD graphene[J]. Carbon, 2014, 77: 814. doi: 10.1016/j.carbon.2014.05.086

[13]

http://www.electronics-tutorials.ws/attenuators/attenuator.html

[14]

http://www.odyseus.nildram.co.uk/RFMicrowave_Circuits_Files/Attenuator.pdf

[15]

Collier R J, Skinner D. Microwave measurements. 3rd ed. London:IET, 2007

[16]

Wang Y Y, Ni Z, Yu T. Raman studies of monolayer graphene:the substrate effect[J]. J Phys Chem C, 2008, 112: 10637. doi: 10.1021/jp8008404

[1]

Shuai Wang, Ke Li, Yibo Jiang, Mifang Cong, Huan Du, Zhengsheng Han. A thru-reflect-line calibration for measuring the characteristics of high power LDMOS transistors. J. Semicond., 2013, 34(3): 034005. doi: 10.1088/1674-4926/34/3/034005

[2]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[3]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[4]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[5]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[6]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[7]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[8]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[9]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[10]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[11]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[12]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[13]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[14]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[15]

Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001

[16]

Kh. S. Karimov, Noshin Fatima, Khaulah Sulaiman, M. Mahroof Tahir, Zubair Ahmad, A. Mateen. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique. J. Semicond., 2015, 36(3): 034005. doi: 10.1088/1674-4926/36/3/034005

[17]

Jiang Ran, Meng Lingguo, Zhang Xijian, Hyung-Suk Jung, Cheol Seong Hwang. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. J. Semicond., 2012, 33(9): 093004. doi: 10.1088/1674-4926/33/9/093004

[18]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[19]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[20]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

Search

Advanced Search >>

GET CITATION

P Sharma, P Singh, K Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line[J]. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003.

Export: BibTex EndNote

Article Metrics

Article views: 1008 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 07 September 2016 Manuscript revised: 07 February 2017 Online: Published: 01 September 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误