J. Semicond. > Volume 38 > Issue 9 > Article Number: 096001

Films surface temperature calculation during growth by sputtering technique

F. Khelfaoui 1, and M. S. Aida 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A calculation of film surface temperature during thin films growth by sputtering technique is proposed. The calculation procedure is based on the conversion into heat of the total flux energy of species impinging the film surface during growth. The results indicate that the film's surface temperature depends drastically on material substrate thermal conductivity and thickness on one hand, and the plasma conditions namely the discharge power on the other. The predicted film surface temperatures were used to explain the microstructure evolution of hydrogenated amorphous silicon (a-Si:H) thin films deposited by reactive radio frequency (RF) sputtering on different substrates.

Key words: sputtering depositionplasmaamorphous siliconthin films

Abstract: A calculation of film surface temperature during thin films growth by sputtering technique is proposed. The calculation procedure is based on the conversion into heat of the total flux energy of species impinging the film surface during growth. The results indicate that the film's surface temperature depends drastically on material substrate thermal conductivity and thickness on one hand, and the plasma conditions namely the discharge power on the other. The predicted film surface temperatures were used to explain the microstructure evolution of hydrogenated amorphous silicon (a-Si:H) thin films deposited by reactive radio frequency (RF) sputtering on different substrates.

Key words: sputtering depositionplasmaamorphous siliconthin films



References:

[1]

Berish I R. Sputtering by particle bombardment. Berin: Springer Verlag, 1981

[2]

Matsuda A. Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma[J]. J Non Cryst Solids, 1983, 59/60: 767. doi: 10.1016/0022-3093(83)90284-3

[3]

Myers A M, Doyle J R, Feng G J. Energetic particle fluxes in magnetron sputter deposition of A-Si:H[J]. J Non Cryst Solids, 1991, 137/138: 783. doi: 10.1016/S0022-3093(05)80237-6

[4]

Hopwood J. Ion bombardment energy distribution in a radio frequency plasma[J]. Appl Phys Lett, 1993, 62(9): 940. doi: 10.1063/1.108526

[5]

Kersten H, Stoffels E, Stoffels M M. The energy balance at substrate surfaces during plasma processing[J]. J Appl Phys, 2000, 87(8): 3637. doi: 10.1063/1.372393

[6]

Edelberg E A, Aydil E S. Modeling of the sheath and the energy distribution of ions bombarding RF-biased substrates in high den-sity plasma reactors and comparison to experimental measurements[J]. J Appl Phys, 1999, 86(9): 4799. doi: 10.1063/1.371446

[7]

Drüsedau T P, Block T, John T M. Energy transfer into the growing film during sputter deposition:an investigation by calorimetric measurements and Monte Carlo simulations[J]. J Vac Sci Technol A, 1911, 15(5): 2896.

[8]

Aida M S, Mirouh K. Effect of RF power on the microstructure of a-Si:H films[J]. Phys Stat Sol A, 1993, 136: K31. doi: 10.1002/(ISSN)1521-396X

[9]

Abdesselem S, Aida M S, Attaf N. Growth mechanism of sputtered amorphous silicon thin films[J]. Physica B, 2006, 373: 331.

[10]

Carlson D E, Wronski C R. Amorphous silicon solar cell[J]. Appl Phys Lett, 1976, 28: 671. doi: 10.1063/1.88617

[11]

Carlson D E. Recent developments in amorphous silicon solar cells[J]. Sol Energy Mater, 1980, 3: 503. doi: 10.1016/0165-1633(80)90002-7

[12]

Hamakawa Y, Okamoto H, Tawada T. Valency control of glow discharge produced a-SiC:H and its application to heterojunction solar cells[J]. Int J Solar Energy, 1982, 1: 125. doi: 10.1080/01425918208909880

[13]

LeComber P G, Spear E W, Gaith A. Amorphous silicon fieldeffect device and possible application[J]. Electron Lett, 1989, 15: 179.

[14]

LeComber P G, Spear W E. Semiconductors and semimetals[J]. Orlando:Academic, 1984, 21: 8.

[15]

Lustig N, Kanicki J, Wisnieff R. Temperature dependent characteristics of hydrogenated amorphous silicon thin film transistors[J]. Mater Res Soc Symp Proc, 1988, 118: 267. doi: 10.1557/PROC-118-267

[16]

Chittick R C, Alexander J H, Sterling H F. The preparation and properties of amorphous silicon[J]. J Electrochem Soc, 1969, 77: 116.

[17]

Spear W E, LeComber P G. Substitutional doping of amorphous silicon[J]. Solid State Commun, 1975, 17: 1193. doi: 10.1016/0038-1098(75)90284-7

[18]

Ross R C, Messier R. Microstructure and properties of RF sputtered amorphous hydrogenated silicon films[J]. J Appl Phys, 1981, 52: 5329. doi: 10.1063/1.329391

[19]

Freeman E C, Paul W. Optical constants of RF sputtered hydrogenated amorphous Si[J]. Phys Rev B, 1979, 20: 716. doi: 10.1103/PhysRevB.20.716

[20]

Abelson J R. Plasma deposition of hydrogenated amorphous silicon:studies of the growth surface[J]. Appl Phys A, 1993, 56: 493. doi: 10.1007/BF00331400

[21]

Aida M S, Rahmane S. Measurement of Ar ions striking force of the substrate during a-Si:H thin films sputtering deposition[J]. Thin Solid films, 1996, 288: 83. doi: 10.1016/S0040-6090(96)08822-0

[22]

Aida M S, Bachiri R. The surface properties of sputtered amorphous silicon thin films[J]. J Non Cryst Solid, 1995, 189: 167. doi: 10.1016/0022-3093(95)00196-4

[23]

McGahanWA . Solutions of the heat conduction equation in mul-tilayers for photothermal deflection experiments[J]. J Appl Phys, 1992, 72(4): 1362. doi: 10.1063/1.351747

[24]

Aida M S. Energy distribution of Ar ions at the substrate in the sputtering deposition of a-Si:H films[J]. J Non Cryst Solids, 1993, 160: 99. doi: 10.1016/0022-3093(93)90289-A

[25]

Benchiheb N, Aida M S, Attaf N. Plasma optical emission spectroscopy diagnostic during amorphous silicon thin films deposition by RF sputtering technique[J]. Mater Sci Eng B, 2010, 172: 191. doi: 10.1016/j.mseb.2010.05.018

[1]

Berish I R. Sputtering by particle bombardment. Berin: Springer Verlag, 1981

[2]

Matsuda A. Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma[J]. J Non Cryst Solids, 1983, 59/60: 767. doi: 10.1016/0022-3093(83)90284-3

[3]

Myers A M, Doyle J R, Feng G J. Energetic particle fluxes in magnetron sputter deposition of A-Si:H[J]. J Non Cryst Solids, 1991, 137/138: 783. doi: 10.1016/S0022-3093(05)80237-6

[4]

Hopwood J. Ion bombardment energy distribution in a radio frequency plasma[J]. Appl Phys Lett, 1993, 62(9): 940. doi: 10.1063/1.108526

[5]

Kersten H, Stoffels E, Stoffels M M. The energy balance at substrate surfaces during plasma processing[J]. J Appl Phys, 2000, 87(8): 3637. doi: 10.1063/1.372393

[6]

Edelberg E A, Aydil E S. Modeling of the sheath and the energy distribution of ions bombarding RF-biased substrates in high den-sity plasma reactors and comparison to experimental measurements[J]. J Appl Phys, 1999, 86(9): 4799. doi: 10.1063/1.371446

[7]

Drüsedau T P, Block T, John T M. Energy transfer into the growing film during sputter deposition:an investigation by calorimetric measurements and Monte Carlo simulations[J]. J Vac Sci Technol A, 1911, 15(5): 2896.

[8]

Aida M S, Mirouh K. Effect of RF power on the microstructure of a-Si:H films[J]. Phys Stat Sol A, 1993, 136: K31. doi: 10.1002/(ISSN)1521-396X

[9]

Abdesselem S, Aida M S, Attaf N. Growth mechanism of sputtered amorphous silicon thin films[J]. Physica B, 2006, 373: 331.

[10]

Carlson D E, Wronski C R. Amorphous silicon solar cell[J]. Appl Phys Lett, 1976, 28: 671. doi: 10.1063/1.88617

[11]

Carlson D E. Recent developments in amorphous silicon solar cells[J]. Sol Energy Mater, 1980, 3: 503. doi: 10.1016/0165-1633(80)90002-7

[12]

Hamakawa Y, Okamoto H, Tawada T. Valency control of glow discharge produced a-SiC:H and its application to heterojunction solar cells[J]. Int J Solar Energy, 1982, 1: 125. doi: 10.1080/01425918208909880

[13]

LeComber P G, Spear E W, Gaith A. Amorphous silicon fieldeffect device and possible application[J]. Electron Lett, 1989, 15: 179.

[14]

LeComber P G, Spear W E. Semiconductors and semimetals[J]. Orlando:Academic, 1984, 21: 8.

[15]

Lustig N, Kanicki J, Wisnieff R. Temperature dependent characteristics of hydrogenated amorphous silicon thin film transistors[J]. Mater Res Soc Symp Proc, 1988, 118: 267. doi: 10.1557/PROC-118-267

[16]

Chittick R C, Alexander J H, Sterling H F. The preparation and properties of amorphous silicon[J]. J Electrochem Soc, 1969, 77: 116.

[17]

Spear W E, LeComber P G. Substitutional doping of amorphous silicon[J]. Solid State Commun, 1975, 17: 1193. doi: 10.1016/0038-1098(75)90284-7

[18]

Ross R C, Messier R. Microstructure and properties of RF sputtered amorphous hydrogenated silicon films[J]. J Appl Phys, 1981, 52: 5329. doi: 10.1063/1.329391

[19]

Freeman E C, Paul W. Optical constants of RF sputtered hydrogenated amorphous Si[J]. Phys Rev B, 1979, 20: 716. doi: 10.1103/PhysRevB.20.716

[20]

Abelson J R. Plasma deposition of hydrogenated amorphous silicon:studies of the growth surface[J]. Appl Phys A, 1993, 56: 493. doi: 10.1007/BF00331400

[21]

Aida M S, Rahmane S. Measurement of Ar ions striking force of the substrate during a-Si:H thin films sputtering deposition[J]. Thin Solid films, 1996, 288: 83. doi: 10.1016/S0040-6090(96)08822-0

[22]

Aida M S, Bachiri R. The surface properties of sputtered amorphous silicon thin films[J]. J Non Cryst Solid, 1995, 189: 167. doi: 10.1016/0022-3093(95)00196-4

[23]

McGahanWA . Solutions of the heat conduction equation in mul-tilayers for photothermal deflection experiments[J]. J Appl Phys, 1992, 72(4): 1362. doi: 10.1063/1.351747

[24]

Aida M S. Energy distribution of Ar ions at the substrate in the sputtering deposition of a-Si:H films[J]. J Non Cryst Solids, 1993, 160: 99. doi: 10.1016/0022-3093(93)90289-A

[25]

Benchiheb N, Aida M S, Attaf N. Plasma optical emission spectroscopy diagnostic during amorphous silicon thin films deposition by RF sputtering technique[J]. Mater Sci Eng B, 2010, 172: 191. doi: 10.1016/j.mseb.2010.05.018

Search

Advanced Search >>

GET CITATION

F. Khelfaoui, M. S. Aida. Films surface temperature calculation during growth by sputtering technique[J]. J. Semicond., 2017, 38(9): 096001. doi: 10.1088/1674-4926/38/9/096001.

Export: BibTex EndNote

Article Metrics

Article views: 1901 Times PDF downloads: 32 Times Cited by: 0 Times

History

Manuscript received: 13 July 2016 Manuscript revised: 26 February 2017 Online: Published: 01 September 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误