J. Semicond. > Volume 39 > Issue 1 > Article Number: 011006

Flexible magnetic thin films and devices

Ping Sheng 1, 2, 3, , Baomin Wang 1, 2, , and Runwei Li 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices.

Key words: flexiblestrain/stressmagnetic anisotropymagnetic thin films/magnetic devices

Abstract: Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices.

Key words: flexiblestrain/stressmagnetic anisotropymagnetic thin films/magnetic devices



References:

[1]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911

[2]

Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321

[3]

Putz B, Schoeppner R L, Glushko O, et al. Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Sci Mater, 2015, 102: 23

[4]

Makarov D, Melzer M, Karnaushenko D, et al. Shapeable magnetoelectronics. Appl Phys R, 2016, 3(1): 011101

[5]

Tao L, Wang D, Jiang S, et al. Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond, 2016, 37(4): 041001

[6]

Sunkook K, Hyuk-Jun K, Sunghun L, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23(31): 3511

[7]

Yagi I, Hirai N, Miyamoto Y, et al. A flexible full-color AMOLED display driven by OTFTs. J Soc Inf Display, 2008, 16(1): 15

[8]

Gaikwad A M, Steingart D A, Nga Ng T, et al. A flexible high potential printed battery for powering printed electronics. Appl Phys Lett, 2013, 102: 233302

[9]

Gingerich M D, Akhmechet R, Cogan S F, et al. A microfabricated, combination flexible circuit/electrode array for a subretinal prosthesis. Invest Ophthalmol Vis Sci, 2012, 53: 535

[10]

Barraud C, Deranlot C, Seneor P, et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl Phys Lett, 2010, 96(7): 911

[11]

Melzer M, Lin G, Makarov D, et al. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012, 24(48): 6468

[12]

Vemulkar T, Mansell R, Fernández-Pacheco A, et al. toward flexible spintronics: perpendicularly magnetized synthetic antiferromagnetic thin films and nanowires on polyimide substrates. Adv Funct Mater, 2016, 26(26): 4704

[13]

Kim J, Hwang J, Song K, et al. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives. Appl Phys Lett, 2016, 108(25): 253101

[14]

Rance W L, Burst J M, Meysing D M, et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 2014, 104(14): 827

[15]

Lim G H, Lee J, Kwon N, et al. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electr Mater Lett, 2016, 12(5): 574

[16]

Chen Y F, Mei Y, Kaltofen R, et al. Towards flexible magnetoelectronics: buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates. Adv Mater, 2008, 20(17): 3224

[17]

Pérez N, Melzer M, Makarov D, et al. High-performance giant magnetoresistive sensorics on flexible Si membranes. Appl Phys Lett, 2015, 106(15): 153501

[18]

Dai G, Zhan Q, Liu Y, et al. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl Phys Lett, 2012, 100(12): 122407

[19]

Dai G, Zhan Q, Yang H, et al. Controllable strain-induced uniaxial anisotropy of Fe81Ga19 films deposited on flexible bowed-substrates. J Appl Phys, 2013, 114(17): 173913

[20]

Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412

[21]

Liu Y W, Zhan Q F, Li R W. Fabrication, properties, and applications of flexible magnetic films. Chin Phys B., 2013, 22(12): 127502

[22]

Tang Z, Wang B, Yang H, et al. Magneto-mechanical coupling effect in amorphous Co40Fe40B20 films grown on flexible substrates. Appl Phys Lett, 2014, 105(10): 103504

[23]

Liu Y, Zhan Q, Wang B, et al. Modulation of magnetic anisotropy in flexible multiferroic FeGa/PVDF heterostructures under various strains. IEEE Trans Magn, 2015, 51(11): 2501404

[24]

Polisetty S, Echtenkamp W, Jones K, et al. Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys Rev B, 2010, 82(13): 134419

[25]

Liu L P, Zhan Q F , Xin R, et al. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes. Chin Phys B, 2016, 25(7): 077307

[26]

Cao D, Wang Z, Pan L, et al. Controllable magnetic and magnetostrictive properties of FeGa films electrodeposited on curvature substrates. Appl Phys A, 2016, 122(11): 938

[27]

Asai R, Ota S, Namazu T, et al. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate. J Appl Phys, 2016, 120(8): 083906

[28]

Kumar D, Singh S, Vishawakarma P, et al. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J Magn Magn Mater, 2016, 418: 99

[29]

Mouhamadou G, Pierpaolo L, Fatih Z, et al. Unambiguous magnetoelastic effect on residual anisotropy in thin films deposited on flexible substrates. EPL, 2016, 114(1): 17003

[30]

Zhang H, Li Y Y, Yang M Y, et al. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chin Phys B, 2015, 24(7): 077501

[31]

Koch R, Weber M, Thurmer K, et al. Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films. J Magn Magn Mater, 1996, 159(1/2): L11

[32]

Wu X W, Rzchowski M S, Wang H S, et al. Strain-induced magnetic properties of Pr0.67Sr0.33MnO3 thin films. Phys Rev B, 2000, 61(1): 501

[33]

Takagi H, Tsunashima S, Uchiyama S, et al. Stress-induced anisotropy in amorphous Gd–Fe and Tb–Fe sputtered films. J Appl Phys, 1979, 50(3): 1642

[34]

Sander D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep Prog Phys, 1999, 62(5): 809

[35]

Sander D, Enders A,Kirschner J. Stress and magnetic properties of surfaces and ultrathin films. J Magn Magn Mater, 1999, 200(1-3): 439

[36]

Jung C U, Yamada H, Kawasaki M, et al. Magnetic anisotropy control of SrRuO3 films by tunable epitaxial strain. Appl Phys Lett, 2004, 84(14): 2590

[37]

Yu G Q, Wang Z X, Abolfath-Beygi M, et al. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance. Appl Phys Lett, 2015, 106(7): 072402

[38]

Zhang X, Zhan Q, Dai G, et al. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films. J Appl Phys, 2013, 113(17): 17A901

[39]

Huang W, Zhu J, Zeng H Z, et al. Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl Phys Lett, 2006, 89(26): 262506

[40]

Thiele J U, Maat S,Fullerton E E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett, 2003, 82(82): 2859

[41]

Phuoc N N, Chai G, Ong C K. Temperature-dependent dynamic magnetization of FeCoHf thin films fabricated by oblique deposition. J Appl Phys, 2012, 112(8): 83925

[42]

Mcdaniel T. Ultimate limits to thermally assisted magnetic recording. J Phys: Conden Matt, 2005, 17(17): R315

[43]

Liu Y, Wang B, Zhan Q, et al. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites. Sci Rep, 2014, 4(4): 6615

[44]

Lamy Y, Viala B. NiMn, IrMn, and NiO Exchange Coupled CoFe multilayers for microwave applications. IEEE Trans Magn, 2006, 42(10): 3332

[45]

Parkin S S P. Flexible giant magnetoresistance sensors. Appl Phys Lett, 1996, 69(20): 3092

[46]

Cui B, Song C, Wang G Y, et al. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci Rep, 2013, 3(6): 2542

[47]

Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412

[48]

Blachowicz T, Tillmanns A, Fraune M, et al. Exchange bias in epitaxial CoO/Co bilayers with different crystallographic symmetries. Phys Rev B, 2007, 75(5): 054425

[49]

Bai Y H, Wang X, Mu L P, et al. Theoretical investigation of influence of mechanical stress on magnetic properties of ferromagnetic/antiferromagnetic bilayers deposited on flexible substrates. Chin Phys Lett, 2016, 33(8): 087501

[50]

Pan J, Tao Y C, Hu J G. The exchange bias in ferromagnetic/ antiferromagnetic bilayers under the stress field. Acta Phys Sin, 2006, 55(6): 3032

[51]

Binek C, Borisov P, Chen X, et al. Perpendicular exchange bias and its control by magnetic, stress and electric fields. Eur Phys J B, 2005, 45(2): 197

[52]

Zhang Y, Zhan Q, Rong X, et al. Influence of thermal deformation on exchange bias in FeGa/IrMn bilayers grown on flexible polyvinylidene fluoride membranes. IEEE Trans Magn, 2016, 52(7): 4800104

[53]

Qiao X, Wang B, Tang Z, et al. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates. AIP Adv, 2016, 6(5): 056106

[54]

Yu Y, Zhan Q, Wei J, et al. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl Phys Lett, 2015, 106(16): 162405

[55]

Qiao X Y, Wen X C, Wang B M. Enhanced stress-invariance of magnetization direction in magnetic thin films. Appl Phys Lett, 2017, 111: 132405

[56]

Wen X C, Wang B M, Sheng P, et al. Determination of stress-coefficient of magnetoelastic anisotropy in flexible amorphous CoFeB film by anisotropic magnetoresistance. Appl Phys Lett, 2017, 111(14): 142403

[57]

Zhang S, Zhan Q, Yu Y, et al. Surface morphology and magnetic property of wrinkled FeGa thin films fabricated on elastic polydimethylsiloxane. Appl Phys Lett, 2016, 108(10): 102409

[58]

Loong L M, Lee W, Qiu X, et al. Flexible MgO Barrier Magnetic Tunnel Junctions. Adv Mater, 2016, 28(25): 4983

[59]

Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl Phys Lett, 2011, 99(6): 063108

[60]

Li P S, Chen A T, Li D L, et al. Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv Mater, 2014, 26(25): 4320

[61]

Barangi M,Mazumder P. Straintronics-based magnetic tunneling junction: dynamic and static behavior analysis and material investigation. Appl Phys Lett, 2014, 104(16): 162403

[62]

Bradley D. Graphene straintronics CARBON. Mater Today, 2012, 15(5): 185

[63]

Cai Y Q, Bai Z Q, Yang M, et al. Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/ Co2CrAl magnetic tunneling junction. EPL, 2012, 99(3): 37001

[64]

Fashami M S, Munira K, Bandyopadhyay S, et al. Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: reliability of nanomagnetic logic. IEEE Trans Nanotechnol, 2013, 12(6): 1206

[65]

Mamin H J, Gurney B A, Wilhoit D R, et al. High sensitivity spin-valve strain sensor. Appl Phys Lett, 1998, 72(24): 3220

[66]

Linville E, Han D, Judy J, et al. Stress effects on the magnetic properties of FeMn and NiMn spin valves. IEEE Trans Magn, 1998, 34(4): 894

[67]

Han D H, Zhu J G, Judy J H, et al. Stress effects on exchange coupling field, coercivity, and uniaxial anisotropy field of NiO/NiFe bilayer thin film for spin valves. J Appl Phys, 1997, 81(8): 4519

[68]

Oezkaya B, Saranu S R, Mohanan S, et al. Effects of uniaxial stress on the magnetic properties of thin films and GMR sensors prepared on polyimide substrates. Phys Status Solidi A, 2008, 205(8): 1876

[69]

Oksuzoglu R M, Schug C, York B. Influence of stress and unidirectional field annealing on structural and magnetic performance of PtMn bottom spin-filter spin valves. J Magn Magn Mater, 2004, 280(2/3): 304

[70]

Qian L J, Xu X Y, Hu J G. The magnetoresistive effect induced by stress in spin-valve structures. Chin Phys B, 2009, 18(6): 2589

[71]

Tsu I F, Burg G A, Wood W P. Degradation of spin valve heads under accelerated stress conditions. IEEE Trans Magn, 2001, 37(4): 1707

[72]

Xu X, Li M, Hu J, et al. Strain-induced magnetoresistance for novel strain sensors. J Appl Phys, 2010, 108(3): 033916

[73]

Shirota Y, Tsunashima S, Imada R, et al. Giant magnetoresistance effect in CoFeB/Cu/CoFeB spin valves. Jpn J Appl Phys, Part 1, 1999, 38(2A): 714

[74]

Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7): 4828

[75]

Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21): 2472

[76]

Parkin S S P, Roche K P, Suzuki T. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on kapton. Jpn J Appl Phys, Part 2, 1992, 31(9A): L1246

[77]

Uhrmann T, Bär L, Dimopoulos T, et al. Magnetostrictive GMR sensor on flexible polyimide substrates. J Magn Magn Mater, 2006, 307(2): 209

[78]

Li H, Zhan Q, Liu Y, et al. stretchable spin valve with stable magnetic field sensitivity by ribbon-patterned periodic wrinkles. ACS Nano, 2016, 10(4): 4403

[79]

Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun, 2015, 6: 6080

[1]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911

[2]

Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321

[3]

Putz B, Schoeppner R L, Glushko O, et al. Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Sci Mater, 2015, 102: 23

[4]

Makarov D, Melzer M, Karnaushenko D, et al. Shapeable magnetoelectronics. Appl Phys R, 2016, 3(1): 011101

[5]

Tao L, Wang D, Jiang S, et al. Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond, 2016, 37(4): 041001

[6]

Sunkook K, Hyuk-Jun K, Sunghun L, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23(31): 3511

[7]

Yagi I, Hirai N, Miyamoto Y, et al. A flexible full-color AMOLED display driven by OTFTs. J Soc Inf Display, 2008, 16(1): 15

[8]

Gaikwad A M, Steingart D A, Nga Ng T, et al. A flexible high potential printed battery for powering printed electronics. Appl Phys Lett, 2013, 102: 233302

[9]

Gingerich M D, Akhmechet R, Cogan S F, et al. A microfabricated, combination flexible circuit/electrode array for a subretinal prosthesis. Invest Ophthalmol Vis Sci, 2012, 53: 535

[10]

Barraud C, Deranlot C, Seneor P, et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl Phys Lett, 2010, 96(7): 911

[11]

Melzer M, Lin G, Makarov D, et al. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012, 24(48): 6468

[12]

Vemulkar T, Mansell R, Fernández-Pacheco A, et al. toward flexible spintronics: perpendicularly magnetized synthetic antiferromagnetic thin films and nanowires on polyimide substrates. Adv Funct Mater, 2016, 26(26): 4704

[13]

Kim J, Hwang J, Song K, et al. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives. Appl Phys Lett, 2016, 108(25): 253101

[14]

Rance W L, Burst J M, Meysing D M, et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 2014, 104(14): 827

[15]

Lim G H, Lee J, Kwon N, et al. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electr Mater Lett, 2016, 12(5): 574

[16]

Chen Y F, Mei Y, Kaltofen R, et al. Towards flexible magnetoelectronics: buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates. Adv Mater, 2008, 20(17): 3224

[17]

Pérez N, Melzer M, Makarov D, et al. High-performance giant magnetoresistive sensorics on flexible Si membranes. Appl Phys Lett, 2015, 106(15): 153501

[18]

Dai G, Zhan Q, Liu Y, et al. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl Phys Lett, 2012, 100(12): 122407

[19]

Dai G, Zhan Q, Yang H, et al. Controllable strain-induced uniaxial anisotropy of Fe81Ga19 films deposited on flexible bowed-substrates. J Appl Phys, 2013, 114(17): 173913

[20]

Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412

[21]

Liu Y W, Zhan Q F, Li R W. Fabrication, properties, and applications of flexible magnetic films. Chin Phys B., 2013, 22(12): 127502

[22]

Tang Z, Wang B, Yang H, et al. Magneto-mechanical coupling effect in amorphous Co40Fe40B20 films grown on flexible substrates. Appl Phys Lett, 2014, 105(10): 103504

[23]

Liu Y, Zhan Q, Wang B, et al. Modulation of magnetic anisotropy in flexible multiferroic FeGa/PVDF heterostructures under various strains. IEEE Trans Magn, 2015, 51(11): 2501404

[24]

Polisetty S, Echtenkamp W, Jones K, et al. Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys Rev B, 2010, 82(13): 134419

[25]

Liu L P, Zhan Q F , Xin R, et al. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes. Chin Phys B, 2016, 25(7): 077307

[26]

Cao D, Wang Z, Pan L, et al. Controllable magnetic and magnetostrictive properties of FeGa films electrodeposited on curvature substrates. Appl Phys A, 2016, 122(11): 938

[27]

Asai R, Ota S, Namazu T, et al. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate. J Appl Phys, 2016, 120(8): 083906

[28]

Kumar D, Singh S, Vishawakarma P, et al. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J Magn Magn Mater, 2016, 418: 99

[29]

Mouhamadou G, Pierpaolo L, Fatih Z, et al. Unambiguous magnetoelastic effect on residual anisotropy in thin films deposited on flexible substrates. EPL, 2016, 114(1): 17003

[30]

Zhang H, Li Y Y, Yang M Y, et al. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates. Chin Phys B, 2015, 24(7): 077501

[31]

Koch R, Weber M, Thurmer K, et al. Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films. J Magn Magn Mater, 1996, 159(1/2): L11

[32]

Wu X W, Rzchowski M S, Wang H S, et al. Strain-induced magnetic properties of Pr0.67Sr0.33MnO3 thin films. Phys Rev B, 2000, 61(1): 501

[33]

Takagi H, Tsunashima S, Uchiyama S, et al. Stress-induced anisotropy in amorphous Gd–Fe and Tb–Fe sputtered films. J Appl Phys, 1979, 50(3): 1642

[34]

Sander D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep Prog Phys, 1999, 62(5): 809

[35]

Sander D, Enders A,Kirschner J. Stress and magnetic properties of surfaces and ultrathin films. J Magn Magn Mater, 1999, 200(1-3): 439

[36]

Jung C U, Yamada H, Kawasaki M, et al. Magnetic anisotropy control of SrRuO3 films by tunable epitaxial strain. Appl Phys Lett, 2004, 84(14): 2590

[37]

Yu G Q, Wang Z X, Abolfath-Beygi M, et al. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance. Appl Phys Lett, 2015, 106(7): 072402

[38]

Zhang X, Zhan Q, Dai G, et al. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films. J Appl Phys, 2013, 113(17): 17A901

[39]

Huang W, Zhu J, Zeng H Z, et al. Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl Phys Lett, 2006, 89(26): 262506

[40]

Thiele J U, Maat S,Fullerton E E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett, 2003, 82(82): 2859

[41]

Phuoc N N, Chai G, Ong C K. Temperature-dependent dynamic magnetization of FeCoHf thin films fabricated by oblique deposition. J Appl Phys, 2012, 112(8): 83925

[42]

Mcdaniel T. Ultimate limits to thermally assisted magnetic recording. J Phys: Conden Matt, 2005, 17(17): R315

[43]

Liu Y, Wang B, Zhan Q, et al. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites. Sci Rep, 2014, 4(4): 6615

[44]

Lamy Y, Viala B. NiMn, IrMn, and NiO Exchange Coupled CoFe multilayers for microwave applications. IEEE Trans Magn, 2006, 42(10): 3332

[45]

Parkin S S P. Flexible giant magnetoresistance sensors. Appl Phys Lett, 1996, 69(20): 3092

[46]

Cui B, Song C, Wang G Y, et al. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci Rep, 2013, 3(6): 2542

[47]

Zhang X, Zhan Q, Dai G, et al. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures. Appl Phys Lett, 2013, 102(2): 022412

[48]

Blachowicz T, Tillmanns A, Fraune M, et al. Exchange bias in epitaxial CoO/Co bilayers with different crystallographic symmetries. Phys Rev B, 2007, 75(5): 054425

[49]

Bai Y H, Wang X, Mu L P, et al. Theoretical investigation of influence of mechanical stress on magnetic properties of ferromagnetic/antiferromagnetic bilayers deposited on flexible substrates. Chin Phys Lett, 2016, 33(8): 087501

[50]

Pan J, Tao Y C, Hu J G. The exchange bias in ferromagnetic/ antiferromagnetic bilayers under the stress field. Acta Phys Sin, 2006, 55(6): 3032

[51]

Binek C, Borisov P, Chen X, et al. Perpendicular exchange bias and its control by magnetic, stress and electric fields. Eur Phys J B, 2005, 45(2): 197

[52]

Zhang Y, Zhan Q, Rong X, et al. Influence of thermal deformation on exchange bias in FeGa/IrMn bilayers grown on flexible polyvinylidene fluoride membranes. IEEE Trans Magn, 2016, 52(7): 4800104

[53]

Qiao X, Wang B, Tang Z, et al. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates. AIP Adv, 2016, 6(5): 056106

[54]

Yu Y, Zhan Q, Wei J, et al. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl Phys Lett, 2015, 106(16): 162405

[55]

Qiao X Y, Wen X C, Wang B M. Enhanced stress-invariance of magnetization direction in magnetic thin films. Appl Phys Lett, 2017, 111: 132405

[56]

Wen X C, Wang B M, Sheng P, et al. Determination of stress-coefficient of magnetoelastic anisotropy in flexible amorphous CoFeB film by anisotropic magnetoresistance. Appl Phys Lett, 2017, 111(14): 142403

[57]

Zhang S, Zhan Q, Yu Y, et al. Surface morphology and magnetic property of wrinkled FeGa thin films fabricated on elastic polydimethylsiloxane. Appl Phys Lett, 2016, 108(10): 102409

[58]

Loong L M, Lee W, Qiu X, et al. Flexible MgO Barrier Magnetic Tunnel Junctions. Adv Mater, 2016, 28(25): 4983

[59]

Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl Phys Lett, 2011, 99(6): 063108

[60]

Li P S, Chen A T, Li D L, et al. Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv Mater, 2014, 26(25): 4320

[61]

Barangi M,Mazumder P. Straintronics-based magnetic tunneling junction: dynamic and static behavior analysis and material investigation. Appl Phys Lett, 2014, 104(16): 162403

[62]

Bradley D. Graphene straintronics CARBON. Mater Today, 2012, 15(5): 185

[63]

Cai Y Q, Bai Z Q, Yang M, et al. Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/ Co2CrAl magnetic tunneling junction. EPL, 2012, 99(3): 37001

[64]

Fashami M S, Munira K, Bandyopadhyay S, et al. Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: reliability of nanomagnetic logic. IEEE Trans Nanotechnol, 2013, 12(6): 1206

[65]

Mamin H J, Gurney B A, Wilhoit D R, et al. High sensitivity spin-valve strain sensor. Appl Phys Lett, 1998, 72(24): 3220

[66]

Linville E, Han D, Judy J, et al. Stress effects on the magnetic properties of FeMn and NiMn spin valves. IEEE Trans Magn, 1998, 34(4): 894

[67]

Han D H, Zhu J G, Judy J H, et al. Stress effects on exchange coupling field, coercivity, and uniaxial anisotropy field of NiO/NiFe bilayer thin film for spin valves. J Appl Phys, 1997, 81(8): 4519

[68]

Oezkaya B, Saranu S R, Mohanan S, et al. Effects of uniaxial stress on the magnetic properties of thin films and GMR sensors prepared on polyimide substrates. Phys Status Solidi A, 2008, 205(8): 1876

[69]

Oksuzoglu R M, Schug C, York B. Influence of stress and unidirectional field annealing on structural and magnetic performance of PtMn bottom spin-filter spin valves. J Magn Magn Mater, 2004, 280(2/3): 304

[70]

Qian L J, Xu X Y, Hu J G. The magnetoresistive effect induced by stress in spin-valve structures. Chin Phys B, 2009, 18(6): 2589

[71]

Tsu I F, Burg G A, Wood W P. Degradation of spin valve heads under accelerated stress conditions. IEEE Trans Magn, 2001, 37(4): 1707

[72]

Xu X, Li M, Hu J, et al. Strain-induced magnetoresistance for novel strain sensors. J Appl Phys, 2010, 108(3): 033916

[73]

Shirota Y, Tsunashima S, Imada R, et al. Giant magnetoresistance effect in CoFeB/Cu/CoFeB spin valves. Jpn J Appl Phys, Part 1, 1999, 38(2A): 714

[74]

Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7): 4828

[75]

Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21): 2472

[76]

Parkin S S P, Roche K P, Suzuki T. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on kapton. Jpn J Appl Phys, Part 2, 1992, 31(9A): L1246

[77]

Uhrmann T, Bär L, Dimopoulos T, et al. Magnetostrictive GMR sensor on flexible polyimide substrates. J Magn Magn Mater, 2006, 307(2): 209

[78]

Li H, Zhan Q, Liu Y, et al. stretchable spin valve with stable magnetic field sensitivity by ribbon-patterned periodic wrinkles. ACS Nano, 2016, 10(4): 4403

[79]

Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun, 2015, 6: 6080

[1]

Chunhai Yin, Chao Liu, Dongyan Tao, Yiping Zeng. Structural and magnetic properties of Yb-implanted GaN. J. Semicond., 2013, 34(5): 053002. doi: 10.1088/1674-4926/34/5/053002

[2]

Yongle Lou, Yuming Zhang, Hui Guo, Daqing Xu, Yimen Zhang. Study on the mechanism of perpendicular magnetic anisotropy in Ta/CoFeB/MgO system. J. Semicond., 2017, 38(6): 062003. doi: 10.1088/1674-4926/38/6/062003

[3]

Zhuo Shiyi, Xiong Yuying, Gu Min. Magnetic properties of ZnO:Cu thin films prepared by RF magnetron sputtering. J. Semicond., 2009, 30(5): 052004. doi: 10.1088/1674-4926/30/5/052004

[4]

Saeed Ahmed Khan, Min Gao, Yuechang Zhu, Zhuocheng Yan, Yuan Lin. MWCNTs based flexible and stretchable strain sensors. J. Semicond., 2017, 38(5): 053003. doi: 10.1088/1674-4926/38/5/053003

[5]

Zhang Wen, Xu Yuesheng, Wang Shengli. Magnetic Viscosity of Si Melt Under a Magnetic Field. J. Semicond., 2007, 28(1): 65.

[6]

Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview. J. Semicond., 2019, 40(8): 080301. doi: 10.1088/1674-4926/40/8/080301

[7]

Gang Ge, Wei Huang, Jinjun Shao, Xiaochen Dong. Recent progress of flexible and wearable strain sensors for human-motion monitoring. J. Semicond., 2018, 39(1): 011012. doi: 10.1088/1674-4926/39/1/011012

[8]

Jing Xiaocheng, Yao Ruohe, Lin Yushu. Magnetic Field Optimization of a Reactive Ion Etching Device with Magnetic Containment. J. Semicond., 2006, 27(S1): 422.

[9]

Fang Yuming, Huang Qing’an, Li Weihua. A Model for the Pull-In Phenomenon of Magnetic Microactuators with the Reluctance of Magnetic Cores. J. Semicond., 2007, 28(10): 1647.

[10]

Shimin Feng, Suihua Zhou, Zhiyi Chen, Hongxin Zhang. An SLF magnetic antenna calibration system. J. Semicond., 2014, 35(5): 055011. doi: 10.1088/1674-4926/35/5/055011

[11]

Qiang Cao, Shishen Yan. The predicaments and expectations in development of magnetic semiconductors. J. Semicond., 2019, 40(8): 081501. doi: 10.1088/1674-4926/40/8/081501

[12]

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang. Recent advances in flexible and wearable organic optoelectronic devices. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

[13]

Mingzhi Zou, Yue Ma, Xin Yuan, Yi Hu, Jie Liu, Zhong Jin. Flexible devices: from materials, architectures to applications. J. Semicond., 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010

[14]

Bi Jingfeng, Zhao Jianhua, Deng Jiajun, Zheng Yuhong, Wang Weizhu, Li Shushen. Growth,Structure and Magnetic Property of zb-CrAs Films on Different Buffers of InGaAs and GaAs. J. Semicond., 2007, 28(S1): 204.

[15]

Xiaofeng Zhao, Dianzhong Wen, Cuicui Zhuang, Jingya Cao, Zhiqiang Wang. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors. J. Semicond., 2013, 34(3): 036001. doi: 10.1088/1674-4926/34/3/036001

[16]

Yuanqi Huang, Zhengwei Chen, Xiao Zhang, Xiaolong Wang, Yusong Zhi, Zhenping Wu, Weihua Tang. The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film. J. Semicond., 2018, 39(5): 053002. doi: 10.1088/1674-4926/39/5/053002

[17]

Feng Liang, Benling Gao, Yu Gu. Magnetic flux assisted thermospin transport in a Rashba ring. J. Semicond., 2016, 37(10): 102003. doi: 10.1088/1674-4926/37/10/102003

[18]

Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003

[19]

Chang Yongqin, Yu Dapeng, Long Yi. Fabrication and Magnetic Property of Mn Doped ZnO Nanowires. J. Semicond., 2007, 28(S1): 296.

[20]

Xinyu Liu, Dahai Wei, Jianhua Zhao. Preface to the Special Issue on Challenges and Possibilities of Magnetic Semiconductors. J. Semicond., 2019, 40(8): 080101. doi: 10.1088/1674-4926/40/8/080101

Search

Advanced Search >>

GET CITATION

P Sheng, B M Wang, R W Li, Flexible magnetic thin films and devices[J]. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006.

Export: BibTex EndNote

Article Metrics

Article views: 1743 Times PDF downloads: 94 Times Cited by: 0 Times

History

Manuscript received: 19 July 2017 Manuscript revised: 01 November 2017 Online: Accepted Manuscript: 27 December 2017 Published: 01 January 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误