J. Semicond. > Volume 39 > Issue 10 > Article Number: 101001

InP-based monolithically integrated few-mode devices

Dan Lu 1, 2, 3, , , Yiming He 1, 2, 3, , Zhaosong Li 1, 2, 3, , Lingjuan Zhao 1, 2, 3, and Wei Wang 1, 2, 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Mode-division multiplexing (MDM) has become an increasingly important technology to further increase the transmission capacity of both optical-fiber-based communication networks, data centers and waveguide-based on-chip optical interconnects. Mode manipulation devices are indispensable in MDM system and have been widely studied in fiber, planar lightwave circuits, and silicon and InP based platforms. InP-based integration technology provides the easiest accessibility to bring together the functions of laser sources, modulators, and mode manipulation devices into a single chip, making it a promising solution for fully integrated few-mode transmitters in the MDM system. This paper reviews the recent progress in InP-based mode manipulation devices, including the few-mode converters, multiplexers, demultiplexers, and transmitters. The working principle, structures, and performance of InP-based few-mode devices are discussed.

Key words: mode division multiplexingmode convertermode multiplexerfew mode transmittersphotonics integrated circuit

Abstract: Mode-division multiplexing (MDM) has become an increasingly important technology to further increase the transmission capacity of both optical-fiber-based communication networks, data centers and waveguide-based on-chip optical interconnects. Mode manipulation devices are indispensable in MDM system and have been widely studied in fiber, planar lightwave circuits, and silicon and InP based platforms. InP-based integration technology provides the easiest accessibility to bring together the functions of laser sources, modulators, and mode manipulation devices into a single chip, making it a promising solution for fully integrated few-mode transmitters in the MDM system. This paper reviews the recent progress in InP-based mode manipulation devices, including the few-mode converters, multiplexers, demultiplexers, and transmitters. The working principle, structures, and performance of InP-based few-mode devices are discussed.

Key words: mode division multiplexingmode convertermode multiplexerfew mode transmittersphotonics integrated circuit



References:

[1]

Soma D, Wakayama Y, Beppu S, et al. 10.16-Peta-bit/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C + L band. J Light Technol, 2018, 36(6): 2799380

[2]

Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express, 2005, 13(23): 009381

[3]

Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Light Technol, 2012, 30(15): 2199961

[4]

Ding Y, Xu J, Ros F Da, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21(8): 010376

[5]

Xing J, Li Z, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38(17): 003468

[6]

Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 4069

[7]

Dai D, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23(22): 028376

[8]

Qiu J, Zhou D, Tian Y, et al. Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter. IEEE Photonics J, 2015, 7(5): 2486719

[9]

Leuthold J, Eckner J, Gamper E, et al. Multimode interference couplers for the conversion and combining of zero- and first-order modes. J Light Technol, 1998, 16(7): 701401

[10]

Guo F, Lu D, Zhang R, et al. An MMI-based mode (DE)MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol Lett, 2016, 28(21): 2599934

[11]

Guo F, Lu D, Zhang R, et al. Two-mode converters at 1.3 μm based on multimode interference couplers on inp substrates. Chin Phys Lett, 2016, 33(2): 024203

[12]

Zhang L M, Lu D, Li Z S, et al. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate. J Semicond, 2016, 37(12): 124005

[13]

Li Z, Lu D, Zuo B, et al. Proposal of an InP-based few-mode transmitter based on multimode interference couplers for wavelength division multiplexing and mode division multiplexing applications. Chine Opt Lett, 2016, 14(8): 080601

[14]

Li Z, Lu D, Zhao L, et al. An InP-based two-mode converter/(de) multiplexer with 100% mode conversion efficiency by using multimode interference couplers as the building blocks. Conf Lasers Electr-Optics, 2016: JW2A.123

[15]

Guo F, Lu D, Zhang R, et al. Compact two-mode (de)multiplexer based on MMI couplers with different core thickness on InP. SPIE Photonics West, 2016: 97500Z

[16]

Melati D, Alippi A, Melloni A. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission. Opt Express, 2016, 24(12): 012625

[17]

Li Z, Lu D, He Y, et al. An InP-based directly modulated monolithic integrated few-mode transmitter. Photonics Res, 2018, 6(5): 000463

[18]

Dai D, Wang J, He S. Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects. Prog Electromagn Res, 2013, 143: 13111003

[19]

Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38(9): 001422

[20]

Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express, 2012, 20(12): 013425

[21]

Schmid J H, Lamontagne B, Cheben P, et al. Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides. IEEE Photonics Technol Lett, 2007, 19(11): 897461

[22]

Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38(11): 001854

[23]

Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Appl Opt, 2012, 51(15): 002778

[24]

Li Y, Li C, Li C, et al. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt Express, 2014, 22(5): 005781

[25]

Guo F, Lu D, Zhang R, et al. A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate. IEEE Photonics J, 2016, 8(1): 2523986

[26]

Bachmann M, Besse P, Melchior H. General self-imaging properties in N × N multimode interference couplers including phase relations. Appl Opt, 1994, 33(18): 003905

[27]

Izutsu M, Nakai Y, Sueta T. Operation mechanism of the single-mode optical-waveguide Y junction. Opt Lett, 1982, 7(3): 000136

[28]

Van der Tol J J G M, Pedersen J W, Metaal E G, et al. Mode evolution type polarization splitter on InGaAsP/InP. IEEE Photonics Technol Lett, 1993, 5(12): 262558

[29]

Han L, Liang S, Zhu H, et al. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt Lett, 2015, 40(4): 000518

[30]

Smit M, Leijtens X, Ambrosius H, et al. An introduction to InP-based generic integration technology. Semicond Sci Technol, 2014, 29(8): 083001

[1]

Soma D, Wakayama Y, Beppu S, et al. 10.16-Peta-bit/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C + L band. J Light Technol, 2018, 36(6): 2799380

[2]

Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express, 2005, 13(23): 009381

[3]

Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Light Technol, 2012, 30(15): 2199961

[4]

Ding Y, Xu J, Ros F Da, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21(8): 010376

[5]

Xing J, Li Z, Xiao X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38(17): 003468

[6]

Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 4069

[7]

Dai D, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23(22): 028376

[8]

Qiu J, Zhou D, Tian Y, et al. Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter. IEEE Photonics J, 2015, 7(5): 2486719

[9]

Leuthold J, Eckner J, Gamper E, et al. Multimode interference couplers for the conversion and combining of zero- and first-order modes. J Light Technol, 1998, 16(7): 701401

[10]

Guo F, Lu D, Zhang R, et al. An MMI-based mode (DE)MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol Lett, 2016, 28(21): 2599934

[11]

Guo F, Lu D, Zhang R, et al. Two-mode converters at 1.3 μm based on multimode interference couplers on inp substrates. Chin Phys Lett, 2016, 33(2): 024203

[12]

Zhang L M, Lu D, Li Z S, et al. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate. J Semicond, 2016, 37(12): 124005

[13]

Li Z, Lu D, Zuo B, et al. Proposal of an InP-based few-mode transmitter based on multimode interference couplers for wavelength division multiplexing and mode division multiplexing applications. Chine Opt Lett, 2016, 14(8): 080601

[14]

Li Z, Lu D, Zhao L, et al. An InP-based two-mode converter/(de) multiplexer with 100% mode conversion efficiency by using multimode interference couplers as the building blocks. Conf Lasers Electr-Optics, 2016: JW2A.123

[15]

Guo F, Lu D, Zhang R, et al. Compact two-mode (de)multiplexer based on MMI couplers with different core thickness on InP. SPIE Photonics West, 2016: 97500Z

[16]

Melati D, Alippi A, Melloni A. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission. Opt Express, 2016, 24(12): 012625

[17]

Li Z, Lu D, He Y, et al. An InP-based directly modulated monolithic integrated few-mode transmitter. Photonics Res, 2018, 6(5): 000463

[18]

Dai D, Wang J, He S. Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects. Prog Electromagn Res, 2013, 143: 13111003

[19]

Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38(9): 001422

[20]

Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express, 2012, 20(12): 013425

[21]

Schmid J H, Lamontagne B, Cheben P, et al. Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides. IEEE Photonics Technol Lett, 2007, 19(11): 897461

[22]

Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38(11): 001854

[23]

Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Appl Opt, 2012, 51(15): 002778

[24]

Li Y, Li C, Li C, et al. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt Express, 2014, 22(5): 005781

[25]

Guo F, Lu D, Zhang R, et al. A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate. IEEE Photonics J, 2016, 8(1): 2523986

[26]

Bachmann M, Besse P, Melchior H. General self-imaging properties in N × N multimode interference couplers including phase relations. Appl Opt, 1994, 33(18): 003905

[27]

Izutsu M, Nakai Y, Sueta T. Operation mechanism of the single-mode optical-waveguide Y junction. Opt Lett, 1982, 7(3): 000136

[28]

Van der Tol J J G M, Pedersen J W, Metaal E G, et al. Mode evolution type polarization splitter on InGaAsP/InP. IEEE Photonics Technol Lett, 1993, 5(12): 262558

[29]

Han L, Liang S, Zhu H, et al. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt Lett, 2015, 40(4): 000518

[30]

Smit M, Leijtens X, Ambrosius H, et al. An introduction to InP-based generic integration technology. Semicond Sci Technol, 2014, 29(8): 083001

[1]

Yaman Su, Lijuan Yu, Xia Guo, Xing Zhang, Jianguo Liu, Ninghua Zhu. Few-mode vertical-cavity surface-emitting lasers for space-division multiplexing. J. Semicond., 2017, 38(9): 094002. doi: 10.1088/1674-4926/38/9/094002

[2]

Zhang Zhang, Xing Wang, Wencheng Yu, Ye Tan, Yizhong Yang, Guangjun Xie. 50 MHz dual-mode buck DC-DC converter. J. Semicond., 2016, 37(8): 085002. doi: 10.1088/1674-4926/37/8/085002

[3]

Zhen Shaowei, Zhang Bo, Luo Ping, Hou Sijian, Ye Jingxin, Ma Xiao. A digitally controlled PWM/PSM dual-mode DC/DC converter. J. Semicond., 2011, 32(11): 115007. doi: 10.1088/1674-4926/32/11/115007

[4]

Lai Xinquan, Zeng Huali, Ye Qiang, He Huisen, Zhang Shasha, Sun Yuqing. Design of high efficiency dual-mode buck DC–DC converter. J. Semicond., 2010, 31(11): 115005. doi: 10.1088/1674-4926/31/11/115005

[5]

Chunhong Zhang, Haigang Yang, Richard Shi. A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation. J. Semicond., 2013, 34(6): 065003. doi: 10.1088/1674-4926/34/6/065003

[6]

Hu Hao, Chen Xingbi. A novel high voltage start up circuit for an integrated switched mode power supply. J. Semicond., 2010, 31(9): 094012. doi: 10.1088/1674-4926/31/9/094012

[7]

Yuan Bing, Lai Xinquan, Ye Qiang, Li Yanming, Jia Xinzhang. An Integrated Current-Sensing Circuit for Current-Mode DC-DC Buck Converters. J. Semicond., 2008, 29(8): 1627.

[8]

Yu Yongchang, Han Kefeng, Wang Lifang, Tan Xi, Min Hao. A baseband LPF for GSM, TD-SCDMA and WCDMA multi-mode transmitters. J. Semicond., 2011, 32(2): 025003. doi: 10.1088/1674-4926/32/2/025003

[9]

Shiquan Fan, Zhongming Xue, Hao Lu, Hui Zhao, Li Geng. A novel buck/LDO dual-mode DC-DC converter for efficiency improvement. J. Semicond., 2013, 34(10): 105002. doi: 10.1088/1674-4926/34/10/105002

[10]

Xu Weiwei, Zhu Xiaoting, Hong Zhiliang, Killat D. A single-inductor dual-output switching converter with average current mode control. J. Semicond., 2009, 30(9): 095012. doi: 10.1088/1674-4926/30/9/095012

[11]

Ye Qiang, Liu Jie, Yuan Bing, Lai Xinquan, Liu Ning. On-chip frequency compensation with a dual signal path operational transconductance amplifier for a voltage mode control DC/DC converter. J. Semicond., 2012, 33(4): 045006. doi: 10.1088/1674-4926/33/4/045006

[12]

Ling Yang, Guoding Dai, Chongwei Xu, Yuezhi Liu. A current-mode DC-DC buck converter with adaptive zero compensation. J. Semicond., 2013, 34(8): 085012. doi: 10.1088/1674-4926/34/8/085012

[13]

Chen Dongpo, He Lenian, Yan Xiaolang. A Current-Mode DC-DC Buck Converter with High Stability and Fast Dynamic Response. J. Semicond., 2006, 27(10): 1742.

[14]

Limeng Zhang, Dan Lu, Zhaosong Li, Biwei Pan, Lingjuan Zhao. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate. J. Semicond., 2016, 37(12): 124005. doi: 10.1088/1674-4926/37/12/124005

[15]

Qiu Dong, Yi Ting, Hong Zhiliang. A low-power triple-mode sigma--delta DAC for reconfigurable (WCDMA/TD-SCDMA/GSM) transmitters. J. Semicond., 2011, 32(2): 025005. doi: 10.1088/1674-4926/32/2/025005

[16]

Chu Xiaojie, Lin Min, Shi Yin, Dai F F. A fully integrated frequency synthesizer for a dual-mode GPS and Compass receiver. J. Semicond., 2012, 33(3): 035004. doi: 10.1088/1674-4926/33/3/035004

[17]

Miao Yang, Baixue Zhang, Yun Cao, Fengfeng Sun, Weifeng Sun. A voltage-mode DC-DC buck converter with fast output voltage-tracking speed and wide output voltage range. J. Semicond., 2014, 35(5): 055005. doi: 10.1088/1674-4926/35/5/055005

[18]

Chen Dongpo, He Lenian, Yan Xiaolang. A 750mA,Dual-Mode PWM/PFM Step-Down DC-DC Converter with High Efficiency. J. Semicond., 2008, 29(8): 1614.

[19]

Hao Wenhan, Jia Chen, Chen Hong, Zhang Chun, Wang Zhihua. A variable step-down conversion ratio switched capacitor DC--DC converter for energy harvesting systems working in intermittent mode. J. Semicond., 2009, 30(12): 125008. doi: 10.1088/1674-4926/30/12/125008

[20]

Xiaobo Wu, Qing Liu, Menglian Zhao, Mingyang Chen. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level. J. Semicond., 2013, 34(1): 015007. doi: 10.1088/1674-4926/34/1/015007

Search

Advanced Search >>

GET CITATION

D Lu, Y M He, Z S Li, L J Zhao, W Wang, InP-based monolithically integrated few-mode devices[J]. J. Semicond., 2018, 39(10): 101001. doi: 10.1088/1674-4926/39/10/101001.

Export: BibTex EndNote

Article Metrics

Article views: 981 Times PDF downloads: 66 Times Cited by: 0 Times

History

Manuscript received: 15 April 2018 Manuscript revised: 30 May 2018 Online: Accepted Manuscript: 23 July 2018 Uncorrected proof: 06 September 2018 Published: 09 October 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误