J. Semicond. > Volume 39 > Issue 10 > Article Number: 104002

Research progress and challenges of two dimensional MoS2 field effect transistors

N Divya Bharathi and K Sivasankaran ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: This review paper gives an outline of the recent research progress and challenges of 2D TMDs material MoS2 based device, that leads to an interesting path towards approaching the electronic applications due to its sizeable band gap. This review presents the improvement of MoS2 material as an alternate to a silicon channel in a transistor with its excellent energy band gap, thermal conductivity, and exclusive physical properties that are expected to draw attention to focusing on semiconducting devices for most futuristic applications. We discuss the band structure of MoS2 for a different number of layers with its structure, and various synthesis techniques of the MoS2 layer are also reviewed. The MoS2 based field effect transistor has attracted a great deal of attention due to its excellent properties such as mobility, on/off current ratio, and maximum on-current of the devices. The transition of mobility as a function of temperature and thickness dependence are also discussed. However, the mobility of MoS2 material is large in bulk form and lower in monolayer form. The use of a high-k gate dielectric in MoS2 FET is used to enhance the mobility of the device. Different metal contact engineering and different doping techniques were deployed to achieve low contact resistance. This review paper focuses on various aspects of layered TMDs material MoS2 based field effect transistors.

Key words: TMDs materialband structuremobilityon/off current ratiocontact resistance

Abstract: This review paper gives an outline of the recent research progress and challenges of 2D TMDs material MoS2 based device, that leads to an interesting path towards approaching the electronic applications due to its sizeable band gap. This review presents the improvement of MoS2 material as an alternate to a silicon channel in a transistor with its excellent energy band gap, thermal conductivity, and exclusive physical properties that are expected to draw attention to focusing on semiconducting devices for most futuristic applications. We discuss the band structure of MoS2 for a different number of layers with its structure, and various synthesis techniques of the MoS2 layer are also reviewed. The MoS2 based field effect transistor has attracted a great deal of attention due to its excellent properties such as mobility, on/off current ratio, and maximum on-current of the devices. The transition of mobility as a function of temperature and thickness dependence are also discussed. However, the mobility of MoS2 material is large in bulk form and lower in monolayer form. The use of a high-k gate dielectric in MoS2 FET is used to enhance the mobility of the device. Different metal contact engineering and different doping techniques were deployed to achieve low contact resistance. This review paper focuses on various aspects of layered TMDs material MoS2 based field effect transistors.

Key words: TMDs materialband structuremobilityon/off current ratiocontact resistance



References:

[1]

Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183

[2]

Ganatra R, Zhang Q. Few-layer MoS2: a promising layered semiconductor. ACS Nano, 2014, 8(5): 4074

[3]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499: 419

[4]

Choi M S, Qu D, Lee D, et al. Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano, 2014, 8(9): 9332

[5]

Izyumskaya N, Demchenko D, Avrutin V, et al. Two-dimensional MoS2 as a new material for electronic devices. Turkish J Phys, 2014, 38(3): 478

[6]

Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano, 2013, 7(4): 3246

[7]

Van Leeuwen R, Castellanos-Gomez A, Steele G A, et al. Time-domain response of atomically thin MoS2 nanomechanical resonators. Appl Phys Lett, 2014, 105(4): 041911

[8]

Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1): 74

[9]

Perkins F K, Friedman A L, Cobas E, et al. Chemical vapor sensing with monolayer MoS2. Nano Lett, 2013, 13(2): 668

[10]

Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8(7): 497

[11]

Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13): 136805

[12]

Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10(4): 1271

[13]

Ellis J K, Lucero M J, Scuseria G E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl Phys Lett, 2011, 99(26): 261908

[14]

Kang J, Cao W, Xie X, et al. Graphene and beyond-graphene 2D crystals for next-generation green electronics. Micro-and Nanotechnology Sensors, Systems, and Applications, 2014, 9083: 908305

[15]

Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7(18): 8261

[16]

Zhang F, Appenzeller J. Tunability of short-channel effects in MoS2 field-effect devices. Nano Lett, 2014, 15(1): 301

[17]

Ong Z Y, Fischetti M V. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys Rev B, 2013, 88(16): 165316

[18]

Kim J H, Kim T H, Lee H, et al. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. AIP Adv, 2016, 6(6): 065106

[19]

Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9): 815

[20]

Lin M W, Kravchenko I I, Fowlkes J, et al. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology, 2016, 27(16): 165203

[21]

Roy T, Tosun M, Cao X, et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano, 2015, 9(2): 2071-9

[22]

Liu L, Kumar S B, Ouyang Y, et al. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices, 2011, 58(9): 3042

[23]

Kwak J Y, Hwang J, Calderon B. AIP advances electrical characteristics of multilayer MoS2 FET’s with MoS2/graphene heterojunction contacts. Nano Lett, 2014, 14(8): 4511

[24]

Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6(10): 8563

[25]

Li X, Zhu H W. Two-dimensional MoS2: properties, preparation, and applications. J Materiom, 2015, 1(1): 33

[26]

Nicolosi V, Chhowalla M, Kanatzidis M G. AIP advances liquid exfoliation of layered materials. Science, 2013, 340(6139): 1226419

[27]

Coleman J N, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568

[28]

Ren J, Wang S, Cheng Z, et al. Passively Q-switched nanosecond erbium-doped fiber laser with MoS2 saturable absorber. Optics Express, 2015, 23(5): 5607

[29]

Fominski V Yu, Nevolin V N, Romanov R I. Ion-assisted deposition of MoS2 films from laser-generated plume under pulsed electric field. J Appl Phys, 2001, 89(2): 1449

[30]

Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24(17): 2320

[31]

Hong J, Hu Z, Probert M, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun, 2015, 6: 6293

[32]

Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications. J Mater Chem, 2012, 22(46): 24230

[33]

Hussain S, Shehzad M A, Vikraman D, et al. Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering. Nanoscale, 2016, 8(7): 4340

[34]

Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3): 147

[35]

Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be. Nano Lett, 2011, 11(9): 3768

[36]

Liu H, Ye P D. Dual-gate MOSFET with atomic-layer-deposited Al2O3 as top gate dielectric. IEEE Electron Device Lett, 2012, 33(4): 546

[37]

Yoo G, Choi S L, Lee S, et al. Enhancement-mode operation of multilayer MoS2 transistors with a fluoropolymer gate dielectric layer. Appl Phys Lett, 2016, 108(26): 263106

[38]

Ganapathi K L, Bhattacharjee S, Mohan S, et al. High-performance HfO2 back gated multilayer MoS2 transistors. IEEE Electron Device Lett, 2016, 37(6): 797-800

[39]

Wen M, Xu J, Liu L, et al. Improved electrical performance of multilayer MoS2 transistor with NH3-annealed ALD HfTiO gate dielectric. IEEE Trans Electron Devices, 2017, 64(3): 1020

[40]

Jena D, Konar A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys Rev Lett, 2007, 98(13): 136805

[41]

Lee C H, Vardy N, Wong W S. Multilayer MoS2 thin-film transistors employing silicon nitride and silicon oxide dielectric layers. IEEE Electron Device Lett, 2016, 37(6): 731

[42]

Qian Q, Li B, Hua M, et al. Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS2 MOSFET with an AlN interfacial layer. Sci Rep, 2016, 6: 27676

[43]

You W X, Su P. A compact subthreshold model for short-channel monolayer transition metal dichalcogenide field-effect transistors. IEEE Trans Electron Devices, 2016, 63(7): 2971

[44]

Neal A T, Liu H, Gu J J, et al. Metal contacts to MoS2: A two-dimensional semiconductor. 70th Annual Device Research Conference (DRC), 2012 : 65

[45]

Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2012, 13(1): 100

[46]

Fontana M, Deppe T, Boyd A K, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep, 2013, 3: 1634

[47]

Chuang S, Battaglia C, Azcatl A, et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett, 2014, 14(3): 1337

[48]

Li Z, Li X, Yang J. Comparative study on electronic structures of Sc and Ti contacts with monolayer and multilayer MoS2. ACS Appl Mater Interfaces, 2015, 7(23): 12981

[49]

Yoon J, Park W, Bae G Y, et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small, 2013, 9(19): 3295

[50]

Liu W, Sarkar D, Kang J, et al. Impact of contact on the operation and performance of back-gated monolayer MoS2 field-effect-transistors. ACS Nano, 2015, 9(8): 7904

[51]

Kang J, Liu W, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl Phys Lett, 2014, 104(9): 093106

[52]

Han G, Yoon Y. Contact-dependent performance variability of monolayer MoS2 field-effect transistors. Appl Phys Lett, 2014, 105(21): 213508

[53]

Chuang H J, Chamlagain B, Koehler M, et al. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WS2, MoS2, and MoSe2 transistors. Nano Lett, 2016, 16(3): 1896

[54]

Yu A Y. Electron tunneling and contact resistance of metal-silicon contact barriers. Solid-State Electron, 1970, 13(2): 239

[55]

Du Y, Liu H, Neal A T, et al. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett, 2013, 34(10): 1328

[56]

Kiriya D, Tosun M, Zhao P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J Am Chem Soc, 2014, 136(22): 7853

[57]

Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett, 2014, 14(11): 6275

[58]

Zhang K, Feng S, Wang J, et al. Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett, 2015, 15(10): 6586

[59]

Fang H, Tosun M, Seol G, et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett, 2013, 13(5): 1991

[60]

Rastogi P, Kumar S, Bhowmick S, et al. Doping strategies for monolayer MoS2 via surface adsorption: a systematic study. J Phys Chem C, 2014, 118(51): 30309

[61]

Shih C J, Wang Q H, Son Y, et al. Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano, 2014, 19; 8(6): 5790

[62]

Du Y, Yang L, Zhang J, et al. MoS2 Field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett, 2014, 35(5): 599

[63]

Zou X, Wang J, Chiu C H, et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv Mater, 2014, 26(36): 6255

[64]

Zou X, Huang C W, Wang L, et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv Mater, 2016, 28(10): 2062

[65]

Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol, 2013, 8(2): 100

[66]

Schwarz S, Dufferwiel S, Walker P M, et al. Two-dimensional metal–chalcogenide films in tunable optical microcavities. Nano Lett, 2014, 14(12): 7003

[67]

Traversi F, Russo V, Sordan R. Integrated complementary graphene inverter. Appl Phys Lett, 2009, 94(22): 150

[68]

Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5(12): 9934

[69]

Radisavljevic B, Whitwick M B, Kis A. Small-signal amplifier based on single-layer MoS2. Appl Phys Lett, 2012, 101(4): 043103

[70]

Wang H, Yu L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12(9): 4674

[71]

Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3: 2018

[72]

Wang X R, Shi Y, Zhang R. Field-effect transistors based on two-dimensional materials for logic applications. Chin Phys B, 2013, 22(9): 098505

[73]

Wu D, Zhang Z, Lv D, et al. High mobility top gated field-effect transistors and integrated circuits based on chemical vapor deposition-derived monolayer MoS2. Mater Express, 2016, 6(2): 198

[1]

Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183

[2]

Ganatra R, Zhang Q. Few-layer MoS2: a promising layered semiconductor. ACS Nano, 2014, 8(5): 4074

[3]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499: 419

[4]

Choi M S, Qu D, Lee D, et al. Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano, 2014, 8(9): 9332

[5]

Izyumskaya N, Demchenko D, Avrutin V, et al. Two-dimensional MoS2 as a new material for electronic devices. Turkish J Phys, 2014, 38(3): 478

[6]

Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano, 2013, 7(4): 3246

[7]

Van Leeuwen R, Castellanos-Gomez A, Steele G A, et al. Time-domain response of atomically thin MoS2 nanomechanical resonators. Appl Phys Lett, 2014, 105(4): 041911

[8]

Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1): 74

[9]

Perkins F K, Friedman A L, Cobas E, et al. Chemical vapor sensing with monolayer MoS2. Nano Lett, 2013, 13(2): 668

[10]

Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8(7): 497

[11]

Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13): 136805

[12]

Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10(4): 1271

[13]

Ellis J K, Lucero M J, Scuseria G E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl Phys Lett, 2011, 99(26): 261908

[14]

Kang J, Cao W, Xie X, et al. Graphene and beyond-graphene 2D crystals for next-generation green electronics. Micro-and Nanotechnology Sensors, Systems, and Applications, 2014, 9083: 908305

[15]

Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7(18): 8261

[16]

Zhang F, Appenzeller J. Tunability of short-channel effects in MoS2 field-effect devices. Nano Lett, 2014, 15(1): 301

[17]

Ong Z Y, Fischetti M V. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys Rev B, 2013, 88(16): 165316

[18]

Kim J H, Kim T H, Lee H, et al. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. AIP Adv, 2016, 6(6): 065106

[19]

Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9): 815

[20]

Lin M W, Kravchenko I I, Fowlkes J, et al. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology, 2016, 27(16): 165203

[21]

Roy T, Tosun M, Cao X, et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano, 2015, 9(2): 2071-9

[22]

Liu L, Kumar S B, Ouyang Y, et al. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices, 2011, 58(9): 3042

[23]

Kwak J Y, Hwang J, Calderon B. AIP advances electrical characteristics of multilayer MoS2 FET’s with MoS2/graphene heterojunction contacts. Nano Lett, 2014, 14(8): 4511

[24]

Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6(10): 8563

[25]

Li X, Zhu H W. Two-dimensional MoS2: properties, preparation, and applications. J Materiom, 2015, 1(1): 33

[26]

Nicolosi V, Chhowalla M, Kanatzidis M G. AIP advances liquid exfoliation of layered materials. Science, 2013, 340(6139): 1226419

[27]

Coleman J N, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568

[28]

Ren J, Wang S, Cheng Z, et al. Passively Q-switched nanosecond erbium-doped fiber laser with MoS2 saturable absorber. Optics Express, 2015, 23(5): 5607

[29]

Fominski V Yu, Nevolin V N, Romanov R I. Ion-assisted deposition of MoS2 films from laser-generated plume under pulsed electric field. J Appl Phys, 2001, 89(2): 1449

[30]

Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24(17): 2320

[31]

Hong J, Hu Z, Probert M, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun, 2015, 6: 6293

[32]

Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications. J Mater Chem, 2012, 22(46): 24230

[33]

Hussain S, Shehzad M A, Vikraman D, et al. Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering. Nanoscale, 2016, 8(7): 4340

[34]

Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3): 147

[35]

Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be. Nano Lett, 2011, 11(9): 3768

[36]

Liu H, Ye P D. Dual-gate MOSFET with atomic-layer-deposited Al2O3 as top gate dielectric. IEEE Electron Device Lett, 2012, 33(4): 546

[37]

Yoo G, Choi S L, Lee S, et al. Enhancement-mode operation of multilayer MoS2 transistors with a fluoropolymer gate dielectric layer. Appl Phys Lett, 2016, 108(26): 263106

[38]

Ganapathi K L, Bhattacharjee S, Mohan S, et al. High-performance HfO2 back gated multilayer MoS2 transistors. IEEE Electron Device Lett, 2016, 37(6): 797-800

[39]

Wen M, Xu J, Liu L, et al. Improved electrical performance of multilayer MoS2 transistor with NH3-annealed ALD HfTiO gate dielectric. IEEE Trans Electron Devices, 2017, 64(3): 1020

[40]

Jena D, Konar A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys Rev Lett, 2007, 98(13): 136805

[41]

Lee C H, Vardy N, Wong W S. Multilayer MoS2 thin-film transistors employing silicon nitride and silicon oxide dielectric layers. IEEE Electron Device Lett, 2016, 37(6): 731

[42]

Qian Q, Li B, Hua M, et al. Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS2 MOSFET with an AlN interfacial layer. Sci Rep, 2016, 6: 27676

[43]

You W X, Su P. A compact subthreshold model for short-channel monolayer transition metal dichalcogenide field-effect transistors. IEEE Trans Electron Devices, 2016, 63(7): 2971

[44]

Neal A T, Liu H, Gu J J, et al. Metal contacts to MoS2: A two-dimensional semiconductor. 70th Annual Device Research Conference (DRC), 2012 : 65

[45]

Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2012, 13(1): 100

[46]

Fontana M, Deppe T, Boyd A K, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep, 2013, 3: 1634

[47]

Chuang S, Battaglia C, Azcatl A, et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett, 2014, 14(3): 1337

[48]

Li Z, Li X, Yang J. Comparative study on electronic structures of Sc and Ti contacts with monolayer and multilayer MoS2. ACS Appl Mater Interfaces, 2015, 7(23): 12981

[49]

Yoon J, Park W, Bae G Y, et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small, 2013, 9(19): 3295

[50]

Liu W, Sarkar D, Kang J, et al. Impact of contact on the operation and performance of back-gated monolayer MoS2 field-effect-transistors. ACS Nano, 2015, 9(8): 7904

[51]

Kang J, Liu W, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl Phys Lett, 2014, 104(9): 093106

[52]

Han G, Yoon Y. Contact-dependent performance variability of monolayer MoS2 field-effect transistors. Appl Phys Lett, 2014, 105(21): 213508

[53]

Chuang H J, Chamlagain B, Koehler M, et al. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WS2, MoS2, and MoSe2 transistors. Nano Lett, 2016, 16(3): 1896

[54]

Yu A Y. Electron tunneling and contact resistance of metal-silicon contact barriers. Solid-State Electron, 1970, 13(2): 239

[55]

Du Y, Liu H, Neal A T, et al. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett, 2013, 34(10): 1328

[56]

Kiriya D, Tosun M, Zhao P, et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J Am Chem Soc, 2014, 136(22): 7853

[57]

Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett, 2014, 14(11): 6275

[58]

Zhang K, Feng S, Wang J, et al. Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett, 2015, 15(10): 6586

[59]

Fang H, Tosun M, Seol G, et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett, 2013, 13(5): 1991

[60]

Rastogi P, Kumar S, Bhowmick S, et al. Doping strategies for monolayer MoS2 via surface adsorption: a systematic study. J Phys Chem C, 2014, 118(51): 30309

[61]

Shih C J, Wang Q H, Son Y, et al. Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano, 2014, 19; 8(6): 5790

[62]

Du Y, Yang L, Zhang J, et al. MoS2 Field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett, 2014, 35(5): 599

[63]

Zou X, Wang J, Chiu C H, et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv Mater, 2014, 26(36): 6255

[64]

Zou X, Huang C W, Wang L, et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv Mater, 2016, 28(10): 2062

[65]

Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol, 2013, 8(2): 100

[66]

Schwarz S, Dufferwiel S, Walker P M, et al. Two-dimensional metal–chalcogenide films in tunable optical microcavities. Nano Lett, 2014, 14(12): 7003

[67]

Traversi F, Russo V, Sordan R. Integrated complementary graphene inverter. Appl Phys Lett, 2009, 94(22): 150

[68]

Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5(12): 9934

[69]

Radisavljevic B, Whitwick M B, Kis A. Small-signal amplifier based on single-layer MoS2. Appl Phys Lett, 2012, 101(4): 043103

[70]

Wang H, Yu L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12(9): 4674

[71]

Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3: 2018

[72]

Wang X R, Shi Y, Zhang R. Field-effect transistors based on two-dimensional materials for logic applications. Chin Phys B, 2013, 22(9): 098505

[73]

Wu D, Zhang Z, Lv D, et al. High mobility top gated field-effect transistors and integrated circuits based on chemical vapor deposition-derived monolayer MoS2. Mater Express, 2016, 6(2): 198

[1]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[2]

Jie Chen, Weiyou Zeng. Coupling effect of quantum wells on band structure. J. Semicond., 2015, 36(10): 102005. doi: 10.1088/1674-4926/36/10/102005

[3]

A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

[4]

You Siyu, Wang Yan. Band Structures of Si Nanowires with Different Surface Terminations. J. Semicond., 2006, 27(11): 1927.

[5]

Liu Hongwei, Wang Runsheng, Huang Ru, Zhang Xing. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs. J. Semicond., 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006

[6]

Gao Jinxia, Zhang Yimen, Zhang Yuming. Study of Electron Mobility in 4H-SiC Buried-Channel MOSFETs. J. Semicond., 2006, 27(2): 283.

[7]

Zhao Ji, Zou Jianping, Tan Yaohua, Yu Zhiping. k·p and Monte Carlo Studies of Hole Mobility in Strained-Si pMOS Inversion Layers. J. Semicond., 2006, 27(12): 2144.

[8]

Jianjun Song, He Zhu, Jinyong Yang, Heming Zhang, Rongxi Xuan, Huiyong Hu. Averaged hole mobility model of biaxially strained Si. J. Semicond., 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003

[9]

Congwei Liao. Mobility impact on compensation performance of AMOLED pixel circuit using IGZO TFTs. J. Semicond., 2019, 40(2): 022403. doi: 10.1088/1674-4926/40/2/022403

[10]

Zhang Guohe, Shao Zhibiao, Han Bin, Liu Derui. A Novel Fully-Depleted Dual-Gate MOSFET. J. Semicond., 2007, 28(9): 1359.

[11]

Mingdong Yi, Ning Zhang, Linghai Xie, Wei Huang. Ambipolar organic heterojunction transistors based on F16CuPc/CuPc with a MoO3 buffer layer. J. Semicond., 2015, 36(10): 104001. doi: 10.1088/1674-4926/36/10/104001

[12]

Liu Chunjuan, Liu Su, Feng Jingjing, Wu Rong. Nickel ohmic contacts of high-concentration P-implanted 4H-SiC. J. Semicond., 2012, 33(3): 036002. doi: 10.1088/1674-4926/33/3/036002

[13]

Yi Xiaoyan, Ma Long, Guo Jinxia, Wang Liangchen, Li Jinmin. Investigation of p-Electrode in High Power GaN-LED Application. J. Semicond., 2005, 26(S1): 161.

[14]

Zhang Jiahong, Huang Qing’an, Yu Hong, Lei Shuangying. A Theoretical Study of the Piezoresistivity of a p-Type Silicon Nanoplate. J. Semicond., 2008, 29(5): 970.

[15]

Jianfeng Fan, Xiaoman Cheng, Xiao Bai, Lingcheng Zheng, Jing Jiang, Feng Wu. Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer. J. Semicond., 2014, 35(6): 064004. doi: 10.1088/1674-4926/35/6/064004

[16]

Bahniman Ghosh, Naval Kishor. An ab initio study of strained two-dimensional MoSe2. J. Semicond., 2015, 36(4): 043001. doi: 10.1088/1674-4926/36/4/043001

[17]

Bo Liu, Jiayun Yin, Yuanjie Lü, Shaobo Dun, Xiongwen Zhang, Zhihong Feng, Shujun Cai. Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD. J. Semicond., 2014, 35(11): 113005. doi: 10.1088/1674-4926/35/11/113005

[18]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[19]

Amit Chaudhry, J. N. Roy, Garima Joshi. Nanoscale strained-Si MOSFET physics and modeling approaches: a review. J. Semicond., 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001

[20]

Yuanfang Yu, Zhenzhen Li, Wenhui Wang, Xitao Guo, Jie Jiang, Haiyan Nan, Zhenhua Ni. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. J. Semicond., 2017, 38(3): 033003. doi: 10.1088/1674-4926/38/3/033003

Search

Advanced Search >>

GET CITATION

N D Bharathi, K Sivasankaran, Research progress and challenges of two dimensional MoS2 field effect transistors[J]. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002.

Export: BibTex EndNote

Article Metrics

Article views: 1135 Times PDF downloads: 169 Times Cited by: 0 Times

History

Manuscript received: 20 February 2018 Manuscript revised: 11 April 2018 Online: Uncorrected proof: 05 July 2018 Published: 09 October 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误