J. Semicond. > Volume 39 > Issue 12 > Article Number: 122005

Hydrodynamic simulations of terahertz oscillation in double-layer graphene

Wei Feng ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: We have theoretically studied current self-oscillations in double-layer graphene n+nn+ diodes driven by dc bias with the help of a time-dependent hydrodynamic model. The current self-oscillation results from resonant tunneling in the double-layer graphene structure. A detailed investigation of the dependence of the current self-oscillations on the applied bias has been carried out. The frequencies of current self-oscillations are in the terahertz (THz) region. The double-layer graphene n+nn+ device studied here may be presented as a THz source at room temperature.

Key words: terahertzgraphenecurrent self-oscillation

Abstract: We have theoretically studied current self-oscillations in double-layer graphene n+nn+ diodes driven by dc bias with the help of a time-dependent hydrodynamic model. The current self-oscillation results from resonant tunneling in the double-layer graphene structure. A detailed investigation of the dependence of the current self-oscillations on the applied bias has been carried out. The frequencies of current self-oscillations are in the terahertz (THz) region. The double-layer graphene n+nn+ device studied here may be presented as a THz source at room temperature.

Key words: terahertzgraphenecurrent self-oscillation



References:

[1]

Novoselov KS, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666

[2]

Apalkov V M, Chakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447

[3]

Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438

[4]

Zheng Y, Ni G Xn, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602

[5]

Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438

[6]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574

[7]

Liu Z, Sanderson M, Zhang C, et al. Nonlinear optical conductivity of bilayer graphene with Rashba spin-orbit interaction in the terahertz regime. J Appl Phys, 2015, 118: 043106

[8]

Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794

[9]

Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118

[10]

Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104

[11]

Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453

[12]

Ridley B K. X centers in sodium chloride containing calcium. Proc Phys Soc, 1961, 77: 153

[13]

Feng W, Cao J C. Theoretical study of terahertz current oscillation in GaAs1−xNx. J. Appl. Phys, 2008, 104: 013111

[14]

Feng W, Cao J C. Nonlinear dynamics in GaAs1−xNx diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708

[15]

Zhang Z Z, Chang K, Chan K S. Resonant tunneling through double-bended graphene nanoribbons. Appl Phys Lett, 2008, 93: 062106

[16]

Zhai F. Theory of huge tunneling magnetoresistance in graphene. Phys Rev B, 2008, 77: 113409

[1]

Novoselov KS, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666

[2]

Apalkov V M, Chakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447

[3]

Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438

[4]

Zheng Y, Ni G Xn, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602

[5]

Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438

[6]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574

[7]

Liu Z, Sanderson M, Zhang C, et al. Nonlinear optical conductivity of bilayer graphene with Rashba spin-orbit interaction in the terahertz regime. J Appl Phys, 2015, 118: 043106

[8]

Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794

[9]

Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118

[10]

Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104

[11]

Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453

[12]

Ridley B K. X centers in sodium chloride containing calcium. Proc Phys Soc, 1961, 77: 153

[13]

Feng W, Cao J C. Theoretical study of terahertz current oscillation in GaAs1−xNx. J. Appl. Phys, 2008, 104: 013111

[14]

Feng W, Cao J C. Nonlinear dynamics in GaAs1−xNx diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708

[15]

Zhang Z Z, Chang K, Chan K S. Resonant tunneling through double-bended graphene nanoribbons. Appl Phys Lett, 2008, 93: 062106

[16]

Zhai F. Theory of huge tunneling magnetoresistance in graphene. Phys Rev B, 2008, 77: 113409

[1]

Wei Feng, Lijuan Shi. Nonlinear dynamics in a terahertz-driven double-layer graphene diode. J. Semicond., 2018, 39(12): 124012. doi: 10.1088/1674-4926/39/12/124012

[2]

Liu H C, Luo H, Ban D, Wachter M, Song C Y, Wasilewski Z R, Buchanan M, Aers G C, SpringThorpe A J, Cao J C, Feng S L, Williams B S, Hu Q. Terahertz Semiconductor Quantum Well Devices. J. Semicond., 2006, 27(4): 627.

[3]

Hamed Ghodsi, Hassan Kaatuzian. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system. J. Semicond., 2015, 36(5): 054010. doi: 10.1088/1674-4926/36/5/054010

[4]

Aritra Acharyya, Suranjana Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices. J. Semicond., 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005

[5]

Jingtao Zhou, Chengyue Yang, Ji Ge, Zhi Jin. Planar InP-based Schottky barrier diodes for terahertz applications. J. Semicond., 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003

[6]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[7]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[8]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[9]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[10]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[11]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[12]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[13]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[14]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[15]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[16]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[17]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[18]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[19]

Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001

[20]

J. Ajayan, D. Nirmal. 22 nm In0.75Ga0.25As channel-based HEMTs on InP/GaAs substrates for future THz applications. J. Semicond., 2017, 38(4): 044001. doi: 10.1088/1674-4926/38/4/044001

Search

Advanced Search >>

GET CITATION

F Wei, Hydrodynamic simulations of terahertz oscillation in double-layer graphene[J]. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005.

Export: BibTex EndNote

Article Metrics

Article views: 721 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 24 April 2018 Manuscript revised: 08 May 2018 Online: Uncorrected proof: 20 November 2018 Published: 13 December 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误