J. Semicond. > Volume 39 > Issue 12 > Article Number: 124007

The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors

Jiaming Luo 1, 2, , Min Guan 1, , , Yang Zhang 1, 2, , Liqiang Chen 3, and Yiping Zeng 1, 2,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: High electron mobility transistors (HEMT) have the potential to be used as high-sensitivity and real-time biosensors. HEMT biosensors have great market prospects. For the application of HEMT biosensors, the electric properties consistency of the inter-chip performance have an important influence on the stability and repeatability of the detection. In this research, we fabricated GaAs/AlGaAs HEMT biosensors of different epitaxial structures and device structures to study the electric properties consistency. We study the relationship between channel size and consistency. We investigated the distribution of device current with location on 2 inch GaAs wafer. Based on the studies, the optimal device of a GaAs HEMT biosensor is an A-type epitaxial structure, and a U-type device structure, L = 40 μm, W = 200 μm.

Key words: GaAs HEMTbiosensorelectrical properties

Abstract: High electron mobility transistors (HEMT) have the potential to be used as high-sensitivity and real-time biosensors. HEMT biosensors have great market prospects. For the application of HEMT biosensors, the electric properties consistency of the inter-chip performance have an important influence on the stability and repeatability of the detection. In this research, we fabricated GaAs/AlGaAs HEMT biosensors of different epitaxial structures and device structures to study the electric properties consistency. We study the relationship between channel size and consistency. We investigated the distribution of device current with location on 2 inch GaAs wafer. Based on the studies, the optimal device of a GaAs HEMT biosensor is an A-type epitaxial structure, and a U-type device structure, L = 40 μm, W = 200 μm.

Key words: GaAs HEMTbiosensorelectrical properties



References:

[1]

Li J D, Cheng J J, Miao B, et al. Label free electrical detection of prostate specific antigen with millimeter grade biomolecule-gated AlGaN/GaN high electron mobility transistors. Microsyst Technol, 2015, 21(7): 1489

[2]

Li J D, Cheng J J, Miao B, et al. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204

[3]

Espinosa N, Schwarz S U, Cimalla V, et al. Impedance characterization of DNA-functionalization layers on AlGaN/GaN high electron mobility transistors. Eurosensors, 2015, 120: 912

[4]

Zeggai O, Ould-Abbas A, Bouchaour M, et al. Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. Phys Status Solidi C, 2014, 11: 274

[5]

Alur S, Gnanaprakasa T, Wang Y Q, et al. AlGaN/GaN HEMT based biosensor. ECS Trans, 2010, 52: 61

[6]

Halfaya Y, Bishop C, Soltani A, et al. Investigation of the performance of HEMT-based NO, NO2 and NH3 exhaust gas sensors for automotive antipollution systems. Sensors, 2016, 16(3): 273

[7]

Kang B S, Wang H T, Ren F, et al. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J Appl Phys, 2008, 104(3): 031101

[8]

Lee C M, Wong K M, Chen P, et al. GaN-based Lamb-wave mass-sensors on silicon substrates. IEEE Sensors, 2010: 2008

[9]

Alvarado S F, Riechert H, Christensen N E. Spontaneous spin polarization of photoelectrons from GaAs. Phys Rev Lett, 1985, 55(24): 2716

[10]

Pearton S J, Kang B S, Kim S K, et al. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J Phys: Condes Matter, 2004, 16(29): R961

[11]

Lalinsky T, Drzik M, Vanko G, et al. Piezoelectric response of AlGaN/GaN-based circular-HEMT structures. Microelectron Eng, 2011, 88(8): 2424

[12]

Le Boulbar E D, Edwards M J, Vittoz S, et al. Effect of bias conditions on pressure sensors based on AlGaN/GaN high electron mobility transistor. Sens Actuator A, 2013, 194: 247

[13]

Myers M, Khir F L M, Podolska A, et al. Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode. Sens Actuators B, 2013, 181: 301

[14]

Ma S W, Zhang X H, Liao Q L, et al. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sens Actuators B, 2015, 212: 41

[15]

Wlodarski W B, Shanks R A. Application of GaAs, GaSb and InSb for pressure sensor design. Amsterdam: Elsevier, 1991

[16]

Schalwig J, Muller G, Eickhoff M, et al. Gas sensitive GaN/AlGaN-heterostructures. Sens Actuators B, 2002, 87(3): 425

[17]

Bishop C, Halfaya Y, Soltani A, et al. Experimental study and device design of NO, NO2, and NH3 gas detection for a wide dynamic and large temperature range using Pt/AlGaN/GaN HEMT. IEEE Sensors J, 2016, 16(18): 6828

[18]

Lee H H, Bae M, Jo S H, et al. Differential-mode HEMT-based biosensor for real-time and label-free detection of C-reactive protein. Sens Actuators B, 2016, 234: 316

[19]

Lee H H, Bae M, Jo S H, et al. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein. Sensors, 2015, 15(8): 18416

[20]

Sarangadharan I, Regmi A, Chen Y W, et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron, 2018, 100: 282

[1]

Li J D, Cheng J J, Miao B, et al. Label free electrical detection of prostate specific antigen with millimeter grade biomolecule-gated AlGaN/GaN high electron mobility transistors. Microsyst Technol, 2015, 21(7): 1489

[2]

Li J D, Cheng J J, Miao B, et al. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204

[3]

Espinosa N, Schwarz S U, Cimalla V, et al. Impedance characterization of DNA-functionalization layers on AlGaN/GaN high electron mobility transistors. Eurosensors, 2015, 120: 912

[4]

Zeggai O, Ould-Abbas A, Bouchaour M, et al. Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. Phys Status Solidi C, 2014, 11: 274

[5]

Alur S, Gnanaprakasa T, Wang Y Q, et al. AlGaN/GaN HEMT based biosensor. ECS Trans, 2010, 52: 61

[6]

Halfaya Y, Bishop C, Soltani A, et al. Investigation of the performance of HEMT-based NO, NO2 and NH3 exhaust gas sensors for automotive antipollution systems. Sensors, 2016, 16(3): 273

[7]

Kang B S, Wang H T, Ren F, et al. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J Appl Phys, 2008, 104(3): 031101

[8]

Lee C M, Wong K M, Chen P, et al. GaN-based Lamb-wave mass-sensors on silicon substrates. IEEE Sensors, 2010: 2008

[9]

Alvarado S F, Riechert H, Christensen N E. Spontaneous spin polarization of photoelectrons from GaAs. Phys Rev Lett, 1985, 55(24): 2716

[10]

Pearton S J, Kang B S, Kim S K, et al. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J Phys: Condes Matter, 2004, 16(29): R961

[11]

Lalinsky T, Drzik M, Vanko G, et al. Piezoelectric response of AlGaN/GaN-based circular-HEMT structures. Microelectron Eng, 2011, 88(8): 2424

[12]

Le Boulbar E D, Edwards M J, Vittoz S, et al. Effect of bias conditions on pressure sensors based on AlGaN/GaN high electron mobility transistor. Sens Actuator A, 2013, 194: 247

[13]

Myers M, Khir F L M, Podolska A, et al. Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode. Sens Actuators B, 2013, 181: 301

[14]

Ma S W, Zhang X H, Liao Q L, et al. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sens Actuators B, 2015, 212: 41

[15]

Wlodarski W B, Shanks R A. Application of GaAs, GaSb and InSb for pressure sensor design. Amsterdam: Elsevier, 1991

[16]

Schalwig J, Muller G, Eickhoff M, et al. Gas sensitive GaN/AlGaN-heterostructures. Sens Actuators B, 2002, 87(3): 425

[17]

Bishop C, Halfaya Y, Soltani A, et al. Experimental study and device design of NO, NO2, and NH3 gas detection for a wide dynamic and large temperature range using Pt/AlGaN/GaN HEMT. IEEE Sensors J, 2016, 16(18): 6828

[18]

Lee H H, Bae M, Jo S H, et al. Differential-mode HEMT-based biosensor for real-time and label-free detection of C-reactive protein. Sens Actuators B, 2016, 234: 316

[19]

Lee H H, Bae M, Jo S H, et al. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein. Sensors, 2015, 15(8): 18416

[20]

Sarangadharan I, Regmi A, Chen Y W, et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron, 2018, 100: 282

[1]

Ting Huang, Lele Jin, Hui Li, Shengxi Diao, Guoxing Wang, Libin Yao, Lin He. A 1.2 V 600 nW 12-bit 2 kS/s incremental ADC for biosensor application. J. Semicond., 2014, 35(11): 115007. doi: 10.1088/1674-4926/35/11/115007

[2]

Su Baoqing, Wang Chunxia, Kan Qiang, Li Junhua, Xie Yiyang, Wang Zhenzhen, Chen Hongda. A novel structure of silicon-on-insulator microring biosensor based on Young's two-slit interference and its simulation. J. Semicond., 2011, 32(7): 074010. doi: 10.1088/1674-4926/32/7/074010

[3]

Pengfei Wang, Ruihua Nan, Zengyun Jian. The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals. J. Semicond., 2017, 38(6): 062002. doi: 10.1088/1674-4926/38/6/062002

[4]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[5]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[6]

G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J. Semicond., 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001

[7]

Yongye Liang, Kyungsoo Jang, S. Velumani, Cam Phu Thi Nguyen, Junsin Yi. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor. J. Semicond., 2015, 36(2): 024007. doi: 10.1088/1674-4926/36/2/024007

[8]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[9]

Rahul Kumar, Parag Bhargava, Ritu Srivastava, Priyanka Tyagi. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3. J. Semicond., 2015, 36(6): 064001. doi: 10.1088/1674-4926/36/6/064001

[10]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[11]

Sarabdeep Singh, Ashish Raman, Naveen Kumar. Design and optimization analysis of dual material gate on DG-IMOS. J. Semicond., 2017, 38(12): 124003. doi: 10.1088/1674-4926/38/12/124003

[12]

Jiqiang Niu, Yang Zhang, Min Guan, Chengyan Wang, Lijie Cui, Qiumin Yang, Yiyang Li, Yiping Zeng. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor. J. Semicond., 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003

[13]

Namrata Mendiratta, Suman Lata Tripathi. A review on performance comparison of advanced MOSFET structures below 45 nm technology node. J. Semicond., 2020, 41(6): 061401. doi: 10.1088/1674-4926/41/6/061401

[14]

Rahul Kumar, Ritu Srivastava, Punita Singh. Synthesis and electroluminescence characterization of a new aluminum complex,[8-hydroxyquinoline] bis[2, 2'bipyridine] aluminum Al(Bpy)2q. J. Semicond., 2016, 37(1): 013001. doi: 10.1088/1674-4926/37/1/013001

[15]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[16]

Chao Xiong, Jin Xiao, Lei Chen, Wenhan Du, Weilong Xu, Dongdong Hou. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond., 2018, 39(12): 124013. doi: 10.1088/1674-4926/39/12/124013

[17]

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

[18]

Tingting Chen, Bing Liu, Xiujian Chou, Jun Liu, Chenyang Xue, Wendong Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics. J. Semicond., 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002

[19]

Dong Maojin, Chen Zhaoyang, Fan Yanwei, Wang Junhua, Tao Mingde, Cong Xiuyun. NTC and electrical properties of nickel and gold doped n-type silicon material. J. Semicond., 2009, 30(8): 083007. doi: 10.1088/1674-4926/30/8/083007

[20]

Xia Jilin, Liu Bo, Song Zhitang, Feng Songlin. Influence of Deposition Parameters on Electrical Propertiesof Ge2Sb2Te5 Thin Films. J. Semicond., 2006, 27(S1): 155.

Search

Advanced Search >>

GET CITATION

J M Luo, M Guan, Y Zhang, L Q Chen, Y P Zeng, The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors[J]. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007.

Export: BibTex EndNote

Article Metrics

Article views: 1756 Times PDF downloads: 32 Times Cited by: 0 Times

History

Manuscript received: 02 April 2018 Manuscript revised: 04 May 2018 Online: Uncorrected proof: 30 July 2018 Corrected proof: 01 November 2018 Published: 13 December 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误