D H Ren, B Y Xiang, C Hu, K Qian, X L Cheng. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations[J]. J. Semicond., 2018, 39(4): 042002. doi: 10.1088/1674-4926/39/4/042002.
Dahua Ren 1, , , Baoyan Xiang 2, , Cheng Hu 1, , Kai Qian 1, and Xinlu Cheng 3,
Abstract: Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O−H+(2Si=O–H)+, Si−H−(
Key words: amorphous silicon dioxide, hydrogen defects, electronic and optical properties, density functional theory
Abstract: Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O−H+(2Si=O–H)+, Si−H−(
Key words:
amorphous silicon dioxide, hydrogen defects, electronic and optical properties, density functional theory
References:
[1] |
Skuja L, Kajihara K, Hirano M, et al. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2. Phys Rev B, 2011, 84: 205206 |
[2] |
Pacchioni G, Skuja L, Griscom D L. Defects in SiO2 and related dielectrics, science and technology. Springer, 2000 |
[3] |
Skuja L, Hirano M, Hosono H, et al. Defects in oxide glasses. Phys Status Solid C, 2005, 2(1): 15 |
[4] |
Benoit M, Pöhlmann M, Kob W. On the nature of native defects in high OH-content silica glasses: a first-principles study. Europhys Lett, 2008, 82(5): 57004 |
[5] |
Kajihara K, Hirano M, Skuja L, et al. Vacuum-ultraviolet absorption of hydrogenated and deuterated silanol groups and interstitial water molecules in amorphous SiO2. Phys Rev B, 2005, 72: 214112 |
[6] |
Van Ginhoven R M, Hjalmarson H P, Edwards A H, et al. Hydrogen release in SiO2: source sites and release mechanisms. Nucl Instrum Meth B, 2006, 250: 274 |
[7] |
Godet J and Pasquarello A. Ab initio study of charged states of H in amorphous SiO2. Microelectron Eng, 2005, 80: 288 |
[8] |
Edwards A H, Shedd W M, Pugh R D. The theory of H- in SiO2. J Non-Cryst Solids, 2001, 289(1-3): 42 |
[9] |
Skuja L, Kajihara K, Hirano M, et al. Fluorine laser-induced silicon hydride Si–H groups in silica. J Non-Cryst Solids, 2007, 353(5–7): 526 |
[10] |
Zachariasen W H. The atomic arrangement in glass. J Am Chem Soc, 1932, 54: 3841 |
[11] |
Warren B E. The diffraction of X-rays in glass. Phys Rev, 1934, 45: 657 |
[12] |
Khein A, Ashcroft N W. Generalized density functional theory. Phys Rev Lett, 1997, 78: 3346 |
[13] |
Perdew J P, Burke K, Ernerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865 |
[14] |
Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671 |
[15] |
Ren D H, An X Y, Cheng X L, et al. Phase transition and elastic properties of NbN under hydrostatic pressure. J Wuhan Univ Technol-Mater Sci Ed, 2014, 29: 49 |
[16] |
Pack J D, Monkhorst H J. Special points for Brillouin-zone integrations—a reply. Phys Rev B, 1977, 16: 1748 |
[17] |
Mozzi R L, Warren B E. The stucture of vitreous silica. J Appl Crystallogr, 1969, 2: 164 |
[18] |
Li N, Ching W Y. Structural, electronic and optical properties of a large random network model of amorphous SiO2 glass. J Non-Cryst Solids, 2014, 383: 28 |
[19] |
El-Sayed A M, Watkins M B, Shluger A L, et al. Identification of intrinsic electron trapping sites in bulk amorphous silica from ab initio calculations. Microelectron Eng, 2013, 109: 68 |
[20] |
Jin T, Li X, Sun H. Interaction mechanisms between poly(amido-amine) and nano-silicon dioxide. Int J Quantum Chem, 2013, 113(8): 1213 |
[21] |
Jin T, Kong F M. Effect of differently terminal groups of poly(amido-amine) dendrimers on dispersion stability of nano-silica and ab initio calculations. Surf Interface Anal, 2015, 47(4): 474 |
[22] |
Jin T, Zhang F. Interaction mechanism of ultrafine silica and poly(amido-amine) and dispersibility of the complexes in coatings. Prog Org Coat, 2013, 76(2/3): 447 |
[23] |
Fox M. Optical properties of solids. New York: Oxford University Press, 2001 |
[24] |
Wooten F. Optical properties of solids. New York: Acadmic Press, 1972 |
[25] |
Tamura T, Ishibashi S, Tanaka S, et al. First-principles analysis of optical absorption edge in pure and fluorine-doped SiO2 glass. Comput Mater Sci, 2008, 44: 61 |
[26] |
Vella E, Messina F, Cannas M, et al. Unraveling exciton dynamics in amorphous silicon dioxide: interpretation of the optical features from 8 to 11 eV. Phys Rev B, 2011, 83: 174201 |
[27] |
Morimoto Y, Nozawa S, Hosono H. Effect of Xe2 light (7.2 eV) on the infrared and vacuum ultraviolet absorption properties of hydroxyl groups in silica glass. Phys Rev B, 1999, 59: 4066 |
[1] |
Skuja L, Kajihara K, Hirano M, et al. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2. Phys Rev B, 2011, 84: 205206 |
[2] |
Pacchioni G, Skuja L, Griscom D L. Defects in SiO2 and related dielectrics, science and technology. Springer, 2000 |
[3] |
Skuja L, Hirano M, Hosono H, et al. Defects in oxide glasses. Phys Status Solid C, 2005, 2(1): 15 |
[4] |
Benoit M, Pöhlmann M, Kob W. On the nature of native defects in high OH-content silica glasses: a first-principles study. Europhys Lett, 2008, 82(5): 57004 |
[5] |
Kajihara K, Hirano M, Skuja L, et al. Vacuum-ultraviolet absorption of hydrogenated and deuterated silanol groups and interstitial water molecules in amorphous SiO2. Phys Rev B, 2005, 72: 214112 |
[6] |
Van Ginhoven R M, Hjalmarson H P, Edwards A H, et al. Hydrogen release in SiO2: source sites and release mechanisms. Nucl Instrum Meth B, 2006, 250: 274 |
[7] |
Godet J and Pasquarello A. Ab initio study of charged states of H in amorphous SiO2. Microelectron Eng, 2005, 80: 288 |
[8] |
Edwards A H, Shedd W M, Pugh R D. The theory of H- in SiO2. J Non-Cryst Solids, 2001, 289(1-3): 42 |
[9] |
Skuja L, Kajihara K, Hirano M, et al. Fluorine laser-induced silicon hydride Si–H groups in silica. J Non-Cryst Solids, 2007, 353(5–7): 526 |
[10] |
Zachariasen W H. The atomic arrangement in glass. J Am Chem Soc, 1932, 54: 3841 |
[11] |
Warren B E. The diffraction of X-rays in glass. Phys Rev, 1934, 45: 657 |
[12] |
Khein A, Ashcroft N W. Generalized density functional theory. Phys Rev Lett, 1997, 78: 3346 |
[13] |
Perdew J P, Burke K, Ernerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865 |
[14] |
Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671 |
[15] |
Ren D H, An X Y, Cheng X L, et al. Phase transition and elastic properties of NbN under hydrostatic pressure. J Wuhan Univ Technol-Mater Sci Ed, 2014, 29: 49 |
[16] |
Pack J D, Monkhorst H J. Special points for Brillouin-zone integrations—a reply. Phys Rev B, 1977, 16: 1748 |
[17] |
Mozzi R L, Warren B E. The stucture of vitreous silica. J Appl Crystallogr, 1969, 2: 164 |
[18] |
Li N, Ching W Y. Structural, electronic and optical properties of a large random network model of amorphous SiO2 glass. J Non-Cryst Solids, 2014, 383: 28 |
[19] |
El-Sayed A M, Watkins M B, Shluger A L, et al. Identification of intrinsic electron trapping sites in bulk amorphous silica from ab initio calculations. Microelectron Eng, 2013, 109: 68 |
[20] |
Jin T, Li X, Sun H. Interaction mechanisms between poly(amido-amine) and nano-silicon dioxide. Int J Quantum Chem, 2013, 113(8): 1213 |
[21] |
Jin T, Kong F M. Effect of differently terminal groups of poly(amido-amine) dendrimers on dispersion stability of nano-silica and ab initio calculations. Surf Interface Anal, 2015, 47(4): 474 |
[22] |
Jin T, Zhang F. Interaction mechanism of ultrafine silica and poly(amido-amine) and dispersibility of the complexes in coatings. Prog Org Coat, 2013, 76(2/3): 447 |
[23] |
Fox M. Optical properties of solids. New York: Oxford University Press, 2001 |
[24] |
Wooten F. Optical properties of solids. New York: Acadmic Press, 1972 |
[25] |
Tamura T, Ishibashi S, Tanaka S, et al. First-principles analysis of optical absorption edge in pure and fluorine-doped SiO2 glass. Comput Mater Sci, 2008, 44: 61 |
[26] |
Vella E, Messina F, Cannas M, et al. Unraveling exciton dynamics in amorphous silicon dioxide: interpretation of the optical features from 8 to 11 eV. Phys Rev B, 2011, 83: 174201 |
[27] |
Morimoto Y, Nozawa S, Hosono H. Effect of Xe2 light (7.2 eV) on the infrared and vacuum ultraviolet absorption properties of hydroxyl groups in silica glass. Phys Rev B, 1999, 59: 4066 |
D H Ren, B Y Xiang, C Hu, K Qian, X L Cheng. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations[J]. J. Semicond., 2018, 39(4): 042002. doi: 10.1088/1674-4926/39/4/042002.
Article views: 2331 Times PDF downloads: 51 Times Cited by: 0 Times
Manuscript received: 25 June 2017 Manuscript revised: 09 November 2017 Online: Accepted Manuscript: 10 January 2018 Uncorrected proof: 24 January 2018 Published: 01 April 2018
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2