J. Semicond. > Volume 39 > Issue 4 > Article Number: 045004

A broadband high-efficiency Doherty power amplifier using symmetrical devices

Zhiqun Cheng , , Ming Zhang , Jiangzhou Li and Guohua Liu ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz.

Key words: Doherty power amplifierbroadbandhigh efficiencysymmetric devices

Abstract: This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz.

Key words: Doherty power amplifierbroadbandhigh efficiencysymmetric devices



References:

[1]

Son J, Kim I, Moon J, et al. A highly efficient asymmetric Doherty power amplifier with a new output combining circuit. IEEE Int Microw, Commun, Antennas, Electron Syst Conf, 2011: 1

[2]

Chen S, Wang G, Cheng Z, et al. A bandwdith enhanced Doherty power amplifer with a compact output combiner. IEEE Microw Wireless Compon Lett, 2016, 26(6): 434

[3]

Gustafsson D, Andersson C, Fager C. A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Tech, 2013, 61(1): 533

[4]

Abadi M N A, Golestaneh H, Sarbishaei H, et al. An extended bandwidth Doherty power amplifier using a novel output combiner. IEEE MTT-S Int Dig, Tampa, FL, USA, 2014: 1

[5]

Rubio J M, Fang J, Camarchia V, et al. 3–3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages. IEEE Trans Microw Theory Tech, 2012, 60(8): 2543

[6]

Akbarpour M, Helaoui M, Ghannouchi F M. A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans Microw Theory Tech, 2012, 60(9): 2863

[7]

Piazzon L, Giofrè R, Colantonio P, et al. A wideband Doherty architecture with 36% of fractional bandwidth. IEEE Microw Wireless Compon Lett, 2013, 23(11): 626

[8]

Yang M, Xia J, Zhu A. A 1.8-2.3 GHz broadband Doherty power amplifier with a minimized impedance transformation ratio. Asia-Pacific Microwave Conference, 2015: 1

[9]

Jee S, Lee J, Son J, et al. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station. IEEE Trans Microw Theory Tech, 2015, 63(9): 2802

[10]

Chen S, Cheng Z, Wang G, et al. Compact Doherty power amplifier design for 2 × 2 multiple-input multiple-output system. IEEE Microw Wireless Compon Lett, 2016, 26(3): 216

[11]

Giofre R, Piazzon L, Colantonio P, et al. A closed-form design technique for ultra wideband Doherty power amplifiers. IEEE Trans Microw Theory Tech, 2014, 62(12): 3414

[12]

Park Y, Lee J, Jee S, et al. Gate bias adaptation of Doherty power amplifier for high efficiency and high power. IEEE Microw Wireless Compon Lett, 2015, 25(2): 136

[13]

Sun G, Jansen R. Broadband Doherty power amplifier via real frequency technique. IEEE Trans Microw Theory Tech, 2012, 60(1): 99

[14]

Özen M, Andersson K, Fager C. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Tech, 2016, 64(4): 1273

[15]

Tasker P J, Benedikt J. Waveform inspired models and theharmonic balance emulator. IEEE Microw Mag, 2011, 12(2): 38

[1]

Son J, Kim I, Moon J, et al. A highly efficient asymmetric Doherty power amplifier with a new output combining circuit. IEEE Int Microw, Commun, Antennas, Electron Syst Conf, 2011: 1

[2]

Chen S, Wang G, Cheng Z, et al. A bandwdith enhanced Doherty power amplifer with a compact output combiner. IEEE Microw Wireless Compon Lett, 2016, 26(6): 434

[3]

Gustafsson D, Andersson C, Fager C. A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Tech, 2013, 61(1): 533

[4]

Abadi M N A, Golestaneh H, Sarbishaei H, et al. An extended bandwidth Doherty power amplifier using a novel output combiner. IEEE MTT-S Int Dig, Tampa, FL, USA, 2014: 1

[5]

Rubio J M, Fang J, Camarchia V, et al. 3–3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages. IEEE Trans Microw Theory Tech, 2012, 60(8): 2543

[6]

Akbarpour M, Helaoui M, Ghannouchi F M. A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans Microw Theory Tech, 2012, 60(9): 2863

[7]

Piazzon L, Giofrè R, Colantonio P, et al. A wideband Doherty architecture with 36% of fractional bandwidth. IEEE Microw Wireless Compon Lett, 2013, 23(11): 626

[8]

Yang M, Xia J, Zhu A. A 1.8-2.3 GHz broadband Doherty power amplifier with a minimized impedance transformation ratio. Asia-Pacific Microwave Conference, 2015: 1

[9]

Jee S, Lee J, Son J, et al. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station. IEEE Trans Microw Theory Tech, 2015, 63(9): 2802

[10]

Chen S, Cheng Z, Wang G, et al. Compact Doherty power amplifier design for 2 × 2 multiple-input multiple-output system. IEEE Microw Wireless Compon Lett, 2016, 26(3): 216

[11]

Giofre R, Piazzon L, Colantonio P, et al. A closed-form design technique for ultra wideband Doherty power amplifiers. IEEE Trans Microw Theory Tech, 2014, 62(12): 3414

[12]

Park Y, Lee J, Jee S, et al. Gate bias adaptation of Doherty power amplifier for high efficiency and high power. IEEE Microw Wireless Compon Lett, 2015, 25(2): 136

[13]

Sun G, Jansen R. Broadband Doherty power amplifier via real frequency technique. IEEE Trans Microw Theory Tech, 2012, 60(1): 99

[14]

Özen M, Andersson K, Fager C. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Tech, 2016, 64(4): 1273

[15]

Tasker P J, Benedikt J. Waveform inspired models and theharmonic balance emulator. IEEE Microw Mag, 2011, 12(2): 38

[1]

Junming Lin, Guohao Zhang, Yaohua Zheng, Sizhen Li, Zhihao Zhang, Sidi Chen. Design of broadband class-F power amplifier with high-order harmonic suppression for S-band application. J. Semicond., 2015, 36(12): 125002. doi: 10.1088/1674-4926/36/12/125002

[2]

Huang Qinghua, Hao Mingli, Wang Yuchen, Zhang Zongnan, Liu Xunchun. A UHF Balanced Broadband 20W Power Amplifier. J. Semicond., 2008, 29(2): 361.

[3]

Yaohua Zheng, Guohao Zhang, Ruiqing Zheng, Sizhen Li, Junming Lin, Sidi Chen. Design of broadband class-F power amplifier for multiband LTE handsets applications. J. Semicond., 2015, 36(8): 085004. doi: 10.1088/1674-4926/36/8/085004

[4]

Feng Peng, Li Yunlong, Wu Nanjian. A high efficiency charge pump circuit for low power applications. J. Semicond., 2010, 31(1): 015009. doi: 10.1088/1674-4926/31/1/015009

[5]

Yongyuan Li, Wei Guo, Zhangming Zhu. A high efficiency and power factor, segmented linear constant current LED driver. J. Semicond., 2015, 36(4): 045010. doi: 10.1088/1674-4926/36/4/045010

[6]

Xinyu Ma, Baoxing Duan, Yintang Yang. A 500-600 MHz GaN power amplifier with RC-LC stability network. J. Semicond., 2017, 38(8): 085003. doi: 10.1088/1674-4926/38/8/085003

[7]

Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Min Liu, Yinghui Zhong, Zheng Shi. A broadband regenerative frequency divider in InGaP/GaAs HBT technology. J. Semicond., 2014, 35(7): 075004. doi: 10.1088/1674-4926/35/7/075004

[8]

Ding Ying, Wang Wei, Kan Qiang, Wang Baojun, Zhou Fan. A Broadband Long-Wavelength Superluminescent Diode Based on Graded Composition Bulk InGaAs. J. Semicond., 2005, 26(12): 2309.

[9]

Wenkai Zhu, Xia Wei, Faguang Yan, Quanshan Lv, Ce Hu, Kaiyou Wang. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J. Semicond., 2019, 40(9): 092001. doi: 10.1088/1674-4926/40/9/092001

[10]

Lai Xinquan, Zeng Huali, Ye Qiang, He Huisen, Zhang Shasha, Sun Yuqing. Design of high efficiency dual-mode buck DC–DC converter. J. Semicond., 2010, 31(11): 115005. doi: 10.1088/1674-4926/31/11/115005

[11]

Wang Liangxing, Tu Jielei, Zhang Zhongwei, Chi Weiying, Peng Dongsheng, Chen Chaoqi, Chen Mingbo. High Efficiency Ge Bottom Cell for GaInP2/GaAs/Ge Three-Junction Tandem Solar Cell. J. Semicond., 2005, 26(S1): 196.

[12]

Chenyi Zhou, Zhenghao Lu, Jiangmin Gu, Xiaopeng Yu. A high-efficiency low-voltage class-E PA for IoT applications in sub-1 GHz frequency range. J. Semicond., 2017, 38(10): 105002. doi: 10.1088/1674-4926/38/10/105002

[13]

Chen Dongpo, He Lenian, Yan Xiaolang. A 750mA,Dual-Mode PWM/PFM Step-Down DC-DC Converter with High Efficiency. J. Semicond., 2008, 29(8): 1614.

[14]

Jiang Bowei, Wang Xiao, Min Hao. A Novel All-pMOS AC to DC Charge Pump with High Efficiency. J. Semicond., 2008, 29(4): 660.

[15]

Zhu Zhangming, Liu Lianxi, Yang Yintang, Lei Han. A high efficiency PWM CMOS class-D audio power amplifier. J. Semicond., 2009, 30(2): 025001. doi: 10.1088/1674-4926/30/2/025001

[16]

Shiquan Fan, Zhongming Xue, Hao Lu, Hui Zhao, Li Geng. A novel buck/LDO dual-mode DC-DC converter for efficiency improvement. J. Semicond., 2013, 34(10): 105002. doi: 10.1088/1674-4926/34/10/105002

[17]

Chanrong Jiang, Changchun Chai, Chenxi Han, Yintang Yang. A high performance adaptive on-time controlled valley-current-mode DC–DC buck converter. J. Semicond., 2020, 41(6): 062402. doi: 10.1088/1674-4926/41/6/062402

[18]

Qin Ge, Hongqi Tao, Xuming Yu. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. J. Semicond., 2015, 36(12): 125003. doi: 10.1088/1674-4926/36/12/125003

[19]

Guo Ting, Li Zhiqun, Li Qin, Wang Zhigong. A 7-27 GHz DSCL divide-by-2 frequency divider. J. Semicond., 2012, 33(10): 105006. doi: 10.1088/1674-4926/33/10/105006

[20]

Li Yanming, Lai Xinquan, Yuan Bing, Jia Xinzhang, Zhang Wei, Ye Qiang. Design and Implementation of a Buck DC-DC Controller with Adaptive On-Time Control. J. Semicond., 2008, 29(7): 1396.

Search

Advanced Search >>

GET CITATION

Z Q Cheng, M Zhang, J Z Li, G H Liu. A broadband high-efficiency Doherty power amplifier using symmetrical devices[J]. J. Semicond., 2018, 39(4): 045004. doi: 10.1088/1674-4926/39/4/045004.

Export: BibTex EndNote

Article Metrics

Article views: 2516 Times PDF downloads: 67 Times Cited by: 0 Times

History

Manuscript received: 05 August 2017 Manuscript revised: 09 October 2017 Online: Uncorrected proof: 24 January 2018 Accepted Manuscript: 02 March 2018 Published: 01 April 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误