J. Semicond. > Volume 39 > Issue 7 > Article Number: 072001

First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides

Yuanhui Sun 1, , Xinjiang Wang 1, , Xin-Gang Zhao 1, , Zhiming Shi 2, and Lijun Zhang 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Two-dimensional group-VIB transition metal dichalcogenides (with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic (because of their reasonable carrier mobility) and optoelectronic (because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2 (M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.

Key words: high-throughput calculationstwo-dimensional materialstransition metal dichalcogenidescarrier effective mass

Abstract: Two-dimensional group-VIB transition metal dichalcogenides (with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic (because of their reasonable carrier mobility) and optoelectronic (because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2 (M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.

Key words: high-throughput calculationstwo-dimensional materialstransition metal dichalcogenidescarrier effective mass



References:

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666

[2]

Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110(1): 132

[3]

Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102(30): 10451

[4]

Fivaz R, Mooser E. Mobility of charge carriers in semiconducting layer structures. Phys Rev, 1967, 163(3): 743

[5]

Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nano, 2011, 6(3): 147

[6]

Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13): 136805

[7]

Tongay S, Zhou J, Ataca C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett, 2012, 12(11): 5576

[8]

Jin W C, Yeh P C, Zaki N, et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys Rev Lett, 2013, 111(10): 106801

[9]

Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nano, 2014, 9(2): 111

[10]

Kośmider K, Fernández-Rossier J. Electronic properties of the MoS2-WS2 heterojunction. Phys Rev B, 2013, 87(7): 075451

[11]

Terrones H, López-Urías F, Terrones M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci Rep, 2013, 3: 1549

[12]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419

[13]

Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys Rev B, 2013, 88(8): 085318

[14]

Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 2013, 13(8): 3626

[15]

Zhu C R, Wang G, Liu B L, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys Rev B, 2013, 88(12): 121301

[16]

Feng J, Qian X F, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photon, 2012, 6(12): 866

[17]

Johari P, Shenoy Vivek B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano, 2012, 6(6): 5449

[18]

He K L, Poole C, Mak K F, et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett, 2013, 13(6): 2931

[19]

Peelaers H, Van de Walle C G. Effects of strain on band structure and effective masses in MoS2. Phys Rev B, 2012, 86(24): 241401

[20]

Qi J S, Li X, Qian X F, et al. Bandgap engineering of rippled MoS2 monolayer under external electric field. Appl Phys Lett, 2013, 102(17): 173112

[21]

Wu S F, Ross J S, Liu, G B, et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat Phys, 2013, 9(3): 149

[22]

Chang J, Larentis S, Tutuc E, et al. Atomistic simulation of the electronic states of adatoms in monolayer MoS2. Appl Phys Lett, 2014, 104(14): 141603

[23]

Sengupta A, Mahapatra S. Performance limits of transition metal dichalcogenide (MX2) nanotube surround gate ballistic field effect transistors. J Appl Phys, 2013, 113(19): 194502

[24]

Sengupta A, Chanana A, Mahapatra S. Phonon scattering limited performance of monolayer MoS2 and WSe2 n-MOSFET. AIP Adv, 2015, 5(2): 027101

[25]

Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 2012, 7(11): 699

[26]

Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5(4): 263

[27]

Eda G, Maier S A. Two-dimensional crystals: managing light for optoelectronics. ACS Nano, 2013, 7(7): 5660

[28]

Lebègue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B, 2009, 79(11): 115409

[29]

Han S W, Kwon H, Kim S K, et al. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys Rev B, 2011, 84(4): 045409

[30]

Jo S, Costanzo D, Berger H, et al. Electrostatically induced superconductivity at the surface of WS2. Nano Lett, 2015, 15(2): 1197

[31]

Kang J, Zhang L J, Wei S H. A unified understanding of the thickness-dependent bandgap transition in hexagonal two-dimensional semiconductors. J Phys Chemry Lett, 2016, 7(4): 597

[32]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47(1): 558

[33]

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49(20): 14251

[34]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6(1): 15

[35]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54(16): 11169

[36]

Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953

[37]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59(3): 1758

[38]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865

[39]

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 2006, 27(15): 1787

[40]

Yun W S, Han S W, Hong S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B, 2012, 85(3): 033305

[41]

Rao K S, Senthilnathan J, Liu Y F, et al. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci Rep, 2014, 4: 4237

[42]

Li X D. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B, 2013, 87: 115418

[43]

Ataca C, Şahin H, Ciraci S. Stable, dingle-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C, 2012, 116(16): 8983

[44]

Zhang L J, Zunger A. Evolution of electronic structure as a function of layer thickness in group-VIB transition metal dichalcogenides: emergence of localization prototypes. Nano Lett, 2015, 15(2): 949

[45]

Kumar A, Ahluwalia P K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B, 2012, 85(6): 186

[46]

Böker T, Severin R, Müller A, et al. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys Rev B, 2001, 64(23): 235305

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666

[2]

Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110(1): 132

[3]

Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102(30): 10451

[4]

Fivaz R, Mooser E. Mobility of charge carriers in semiconducting layer structures. Phys Rev, 1967, 163(3): 743

[5]

Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nano, 2011, 6(3): 147

[6]

Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13): 136805

[7]

Tongay S, Zhou J, Ataca C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett, 2012, 12(11): 5576

[8]

Jin W C, Yeh P C, Zaki N, et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys Rev Lett, 2013, 111(10): 106801

[9]

Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nano, 2014, 9(2): 111

[10]

Kośmider K, Fernández-Rossier J. Electronic properties of the MoS2-WS2 heterojunction. Phys Rev B, 2013, 87(7): 075451

[11]

Terrones H, López-Urías F, Terrones M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci Rep, 2013, 3: 1549

[12]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419

[13]

Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys Rev B, 2013, 88(8): 085318

[14]

Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 2013, 13(8): 3626

[15]

Zhu C R, Wang G, Liu B L, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys Rev B, 2013, 88(12): 121301

[16]

Feng J, Qian X F, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photon, 2012, 6(12): 866

[17]

Johari P, Shenoy Vivek B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano, 2012, 6(6): 5449

[18]

He K L, Poole C, Mak K F, et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett, 2013, 13(6): 2931

[19]

Peelaers H, Van de Walle C G. Effects of strain on band structure and effective masses in MoS2. Phys Rev B, 2012, 86(24): 241401

[20]

Qi J S, Li X, Qian X F, et al. Bandgap engineering of rippled MoS2 monolayer under external electric field. Appl Phys Lett, 2013, 102(17): 173112

[21]

Wu S F, Ross J S, Liu, G B, et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat Phys, 2013, 9(3): 149

[22]

Chang J, Larentis S, Tutuc E, et al. Atomistic simulation of the electronic states of adatoms in monolayer MoS2. Appl Phys Lett, 2014, 104(14): 141603

[23]

Sengupta A, Mahapatra S. Performance limits of transition metal dichalcogenide (MX2) nanotube surround gate ballistic field effect transistors. J Appl Phys, 2013, 113(19): 194502

[24]

Sengupta A, Chanana A, Mahapatra S. Phonon scattering limited performance of monolayer MoS2 and WSe2 n-MOSFET. AIP Adv, 2015, 5(2): 027101

[25]

Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 2012, 7(11): 699

[26]

Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5(4): 263

[27]

Eda G, Maier S A. Two-dimensional crystals: managing light for optoelectronics. ACS Nano, 2013, 7(7): 5660

[28]

Lebègue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B, 2009, 79(11): 115409

[29]

Han S W, Kwon H, Kim S K, et al. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys Rev B, 2011, 84(4): 045409

[30]

Jo S, Costanzo D, Berger H, et al. Electrostatically induced superconductivity at the surface of WS2. Nano Lett, 2015, 15(2): 1197

[31]

Kang J, Zhang L J, Wei S H. A unified understanding of the thickness-dependent bandgap transition in hexagonal two-dimensional semiconductors. J Phys Chemry Lett, 2016, 7(4): 597

[32]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47(1): 558

[33]

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49(20): 14251

[34]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6(1): 15

[35]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54(16): 11169

[36]

Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953

[37]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59(3): 1758

[38]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865

[39]

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 2006, 27(15): 1787

[40]

Yun W S, Han S W, Hong S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B, 2012, 85(3): 033305

[41]

Rao K S, Senthilnathan J, Liu Y F, et al. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci Rep, 2014, 4: 4237

[42]

Li X D. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B, 2013, 87: 115418

[43]

Ataca C, Şahin H, Ciraci S. Stable, dingle-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C, 2012, 116(16): 8983

[44]

Zhang L J, Zunger A. Evolution of electronic structure as a function of layer thickness in group-VIB transition metal dichalcogenides: emergence of localization prototypes. Nano Lett, 2015, 15(2): 949

[45]

Kumar A, Ahluwalia P K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B, 2012, 85(6): 186

[46]

Böker T, Severin R, Müller A, et al. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys Rev B, 2001, 64(23): 235305

17100018supp.pdf

[1]

Qing-Hai Tan, Xin Zhang, Xiang-Dong Luo, Jun Zhang, Ping-Heng Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J. Semicond., 2017, 38(3): 031006. doi: 10.1088/1674-4926/38/3/031006

[2]

Le Huang, Nengjie Huo, Zhaoqiang Zheng, Huafeng Dong, Jingbo Li. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr3/MoSe2. J. Semicond., 2020, 41(5): 052206. doi: 10.1088/1674-4926/41/5/052206

[3]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 1.

[4]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[5]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[6]

Peng Zhang, Yiwei Zhang, Yi Wei, Huaning Jiang, Xingguo Wang, Yongji Gong. Contact engineering for two-dimensional semiconductors. J. Semicond., 2020, 41(7): 071901. doi: 10.1088/1674-4926/41/7/071901

[7]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[8]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[9]

Yuanyuan Jin, Huimin Li, Song Liu. Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition. J. Semicond., 2020, 41(7): 072901. doi: 10.1088/1674-4926/41/7/072901

[10]

Shuxian Wang, Zhihao Yu, Xinran Wang. Electrical contacts to two-dimensional transition-metal dichalcogenides. J. Semicond., 2018, 39(12): 124001. doi: 10.1088/1674-4926/39/12/124001

[11]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[12]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[13]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[14]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[15]

Congxin Xia, Jingbo Li. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond., 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001

[16]

Jie Jiang, Zhenhua Ni. Defect engineering in two-dimensional materials. J. Semicond., 2019, 40(7): 070403. doi: 10.1088/1674-4926/40/7/070403

[17]

Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond., 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001

[18]

Lun Dai. Room-temperature stable two-dimensional ferroelectric materials. J. Semicond., 2019, 40(6): 060402. doi: 10.1088/1674-4926/40/6/060402

[19]

Lu Jianduo, Xu Bin. Giant magnetoresistance in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes. J. Semicond., 2012, 33(7): 074007. doi: 10.1088/1674-4926/33/7/074007

[20]

Du Wei, Xu Xingsheng, Han Weihua, Wang Chunxia, Zhang Yang, Yang Fuhua, Chen Hongda. Fabrication of a High Quality Etching Mask for Two-Dimensional Photonic Crystal Structures. J. Semicond., 2006, 27(9): 1640.

Search

Advanced Search >>

GET CITATION

Y H Sun, X J Wang, X G Zhao, Z M Shi, L J Zhang, First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides[J]. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001.

Export: BibTex EndNote

Article Metrics

Article views: 2165 Times PDF downloads: 69 Times Cited by: 0 Times

History

Manuscript received: 24 October 2017 Manuscript revised: Online: Accepted Manuscript: 26 April 2018 Uncorrected proof: 03 May 2018 Published: 01 July 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误