J. Semicond. > Volume 40 > Issue 1 > Article Number: 012804

Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique

Tongchuan Ma , Xuanhu Chen , Fangfang Ren , Shunming Zhu , Shulin Gu , Rong Zhang , Youdou Zheng and Jiandong Ye ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The 8 μm thick single-crystalline α-Ga2O3 epilayers have been heteroepitaxially grown on sapphire (0001) substrates via mist chemical vapor deposition technique. High resolution X-ray diffraction measurements show that the full-widths-at-half-maximum (FWHM) of rocking curves for the (0006) and (10-14) planes are 0.024° and 0.24°, and the corresponding densities of screw and edge dislocations are 2.24 × 106 and 1.63 × 109 cm−2, respectively, indicative of high single crystallinity. The out-of-plane and in-plane epitaxial relationships are [0001] α-Ga2O3//[0001] α-Al2O3 and [11-20] α-Ga2O3//[11-20] α-Al2O3, respectively. The lateral domain size is in micron scale and the indirect bandgap is determined as 5.03 eV by transmittance spectra. Raman measurement indicates that the lattice-mismatch induced compressive residual strain cannot be ruled out despite the large thickness of the α-Ga2O3 epilayer. The achieved high quality α-Ga2O3 may provide an alternative material platform for developing high performance power devices and solar-blind photodetectors.

Key words: ultra-wide bandgap semiconductorchemical vapor depositionepitaxygallium oxide

Abstract: The 8 μm thick single-crystalline α-Ga2O3 epilayers have been heteroepitaxially grown on sapphire (0001) substrates via mist chemical vapor deposition technique. High resolution X-ray diffraction measurements show that the full-widths-at-half-maximum (FWHM) of rocking curves for the (0006) and (10-14) planes are 0.024° and 0.24°, and the corresponding densities of screw and edge dislocations are 2.24 × 106 and 1.63 × 109 cm−2, respectively, indicative of high single crystallinity. The out-of-plane and in-plane epitaxial relationships are [0001] α-Ga2O3//[0001] α-Al2O3 and [11-20] α-Ga2O3//[11-20] α-Al2O3, respectively. The lateral domain size is in micron scale and the indirect bandgap is determined as 5.03 eV by transmittance spectra. Raman measurement indicates that the lattice-mismatch induced compressive residual strain cannot be ruled out despite the large thickness of the α-Ga2O3 epilayer. The achieved high quality α-Ga2O3 may provide an alternative material platform for developing high performance power devices and solar-blind photodetectors.

Key words: ultra-wide bandgap semiconductorchemical vapor depositionepitaxygallium oxide



References:

[1]

Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97(14), 142106

[2]

Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100 (1), 013504

[3]

Playford H Y, Hannon A C, Barney E R, et al.Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chemistry, 2013, 19 (8), 2803

[4]

Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the System Ga2O3-H2O. J Am Chem Soc, 1952, 74 (3), 719

[5]

Aida H, Nishiguchi K, Takeda H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47 (11), 8506

[6]

Mahmoud W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film. Sol Energy Mater Sol Cells, 2016, 152, 65

[7]

Guo D Y, Shi H Z, Qian Y P, et al. Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection. Semicond Sci Technol, 2017, 32 (3), 03LT01.

[8]

Zhao X, Wu Z, Guo D, et al. Growth and characterization of α-phase Ga2−xSnxO3 thin films for solar-blind ultraviolet applications. Semicond Sci Technol, 2016, 31 (6), 065010.

[9]

Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase alpha-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9 (42), 36997

[10]

Li J, Chen X, Ma T, et al. Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy. Appl Phys Lett, 2018, 113 (4), 041901.

[11]

Zhao B, Wang F, Chen H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett, 2015, 15 (6), 3988

[12]

Sasaki K, Higashiwaki M, Kuramata A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates. IEEE Electron Device Lett, 2013, 34 (4), 493

[13]

Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. J Jpn J Appl Phys, 2012, 51, 070203.

[14]

Ito H, Kaneko K, Fujita S. Growth and band gap control of corundum-structured α-Ga2O3 thin films on sapphire by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51, 100207.

[15]

Kaneko K, Nomura T, Kakeya I, et al. Fabrication of highly crystalline corundum-structured α-(Ga1−xFex)2O3 alloy thin films on sapphire substrates. Appl Phys Express 2009, 2, 075501.

[16]

Sun H, Li K H, Castanedo C G T, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des. 2018, 18 (4), 2370

[17]

Yao Y, Okur S, Lyle L A M, et al. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6 (5), 268

[18]

Kumaran R, Tiedje T, Webster S E, et al. Epitaxial Nd-doped alpha-(Al(1−x)Ga(x))2O3 films on sapphire for solid-state waveguide lasers. Opt Lett, 2010, 35 (22), 3793

[19]

Fujita S, Oda M, Kaneko K, et al. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Jpn J Appl Phys, 2016, 55 (12), 1202A3.

[20]

Oda M, Kaneko K, Fujita S, et al. Crack-free thick (~5 μm) α-Ga2O3 films on sapphire substrates with α-(Al,Ga)2O3 buffer layers. Jpn J Appl Phys, 2016, 55 (12), 1202B4.

[21]

Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47 (9), 7311

[22]

Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53 (5), 05FF08.

[23]

Moram M A, Vickers M E. X-ray diffraction of III-nitrides. Rep Prog Phys, 2009, 72 (3), 036502.

[24]

Zheng X H, Chen H, Yan Z B, et al. Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction. J Cryst Growth, 2003, 255 (1/2), 63

[25]

Kaneko K, Kawanowa H, Ito H, et al. Evaluation of misfit relaxation in α-Ga2O3 epitaxial growth on α-Al2O3 substrate. Jpn J Appl Phys, 2012, 51, 020201.

[26]

Davis E A, Mott N F et al. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag A, 1970, 22 (179), 0903

[27]

Cusco R, Domenech-Amador N, Hatakeyama T, et al. Lattice dynamics of a mist-chemical vapor deposition-grown corundum-like Ga2O3 single crystal. J Appl Phys, 2015, 117 (18), 185706.

[1]

Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97(14), 142106

[2]

Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100 (1), 013504

[3]

Playford H Y, Hannon A C, Barney E R, et al.Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chemistry, 2013, 19 (8), 2803

[4]

Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the System Ga2O3-H2O. J Am Chem Soc, 1952, 74 (3), 719

[5]

Aida H, Nishiguchi K, Takeda H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47 (11), 8506

[6]

Mahmoud W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film. Sol Energy Mater Sol Cells, 2016, 152, 65

[7]

Guo D Y, Shi H Z, Qian Y P, et al. Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection. Semicond Sci Technol, 2017, 32 (3), 03LT01.

[8]

Zhao X, Wu Z, Guo D, et al. Growth and characterization of α-phase Ga2−xSnxO3 thin films for solar-blind ultraviolet applications. Semicond Sci Technol, 2016, 31 (6), 065010.

[9]

Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase alpha-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9 (42), 36997

[10]

Li J, Chen X, Ma T, et al. Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy. Appl Phys Lett, 2018, 113 (4), 041901.

[11]

Zhao B, Wang F, Chen H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett, 2015, 15 (6), 3988

[12]

Sasaki K, Higashiwaki M, Kuramata A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates. IEEE Electron Device Lett, 2013, 34 (4), 493

[13]

Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. J Jpn J Appl Phys, 2012, 51, 070203.

[14]

Ito H, Kaneko K, Fujita S. Growth and band gap control of corundum-structured α-Ga2O3 thin films on sapphire by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51, 100207.

[15]

Kaneko K, Nomura T, Kakeya I, et al. Fabrication of highly crystalline corundum-structured α-(Ga1−xFex)2O3 alloy thin films on sapphire substrates. Appl Phys Express 2009, 2, 075501.

[16]

Sun H, Li K H, Castanedo C G T, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des. 2018, 18 (4), 2370

[17]

Yao Y, Okur S, Lyle L A M, et al. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6 (5), 268

[18]

Kumaran R, Tiedje T, Webster S E, et al. Epitaxial Nd-doped alpha-(Al(1−x)Ga(x))2O3 films on sapphire for solid-state waveguide lasers. Opt Lett, 2010, 35 (22), 3793

[19]

Fujita S, Oda M, Kaneko K, et al. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Jpn J Appl Phys, 2016, 55 (12), 1202A3.

[20]

Oda M, Kaneko K, Fujita S, et al. Crack-free thick (~5 μm) α-Ga2O3 films on sapphire substrates with α-(Al,Ga)2O3 buffer layers. Jpn J Appl Phys, 2016, 55 (12), 1202B4.

[21]

Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47 (9), 7311

[22]

Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53 (5), 05FF08.

[23]

Moram M A, Vickers M E. X-ray diffraction of III-nitrides. Rep Prog Phys, 2009, 72 (3), 036502.

[24]

Zheng X H, Chen H, Yan Z B, et al. Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction. J Cryst Growth, 2003, 255 (1/2), 63

[25]

Kaneko K, Kawanowa H, Ito H, et al. Evaluation of misfit relaxation in α-Ga2O3 epitaxial growth on α-Al2O3 substrate. Jpn J Appl Phys, 2012, 51, 020201.

[26]

Davis E A, Mott N F et al. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag A, 1970, 22 (179), 0903

[27]

Cusco R, Domenech-Amador N, Hatakeyama T, et al. Lattice dynamics of a mist-chemical vapor deposition-grown corundum-like Ga2O3 single crystal. J Appl Phys, 2015, 117 (18), 185706.

[1]

Congyu Hu, Katsuhiko Saito, Tooru Tanaka, Qixin Guo. Growth properties of gallium oxide on sapphire substrate by plasma-assisted pulsed laser deposition. J. Semicond., 2019, 40(2): 000000.

[2]

Hang Dong, Huiwen Xue, Qiming He, Yuan Qin, Guangzhong Jian, Shibing Long, Ming Liu. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J. Semicond., 2019, 40(1): 011802. doi: 10.1088/1674-4926/40/1/011802

[3]

Guoguo Yan, Feng Zhang, Yingxi Niu, Fei Yang, Lei Wang, Wanshun Zhao, Guosheng Sun, Yiping Zeng. Chloride-based fast homoepitaxial growth of 4H-SiC films in a vertical hot-wall CVD. J. Semicond., 2016, 37(6): 063001. doi: 10.1088/1674-4926/37/6/063001

[4]

Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, Yue Hao. A review of the most recent progresses of state-of-art gallium oxide power devices. J. Semicond., 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803

[5]

Jiaxing Wei, Rui Xu, Yanfei Yu, Jinliang Hou, Changfeng Li. Simulation and analysis of Si deposition in turbulent CVD reactors. J. Semicond., 2014, 35(8): 083002. doi: 10.1088/1674-4926/35/8/083002

[6]

Buwen Cheng, Cheng Li, Zhi Liu, Chunlai Xue. Research progress of Si-based germanium materials and devices. J. Semicond., 2016, 37(8): 081001. doi: 10.1088/1674-4926/37/8/081001

[7]

Xutang Tao, Jiandong Ye, Shibing Long, Zhitai Jia. Preface to the Special Issue on Ultra-Wide Bandgap Semiconductor Gallium Oxide: from Materials to Devices. J. Semicond., 2019, 40(1): 010101. doi: 10.1088/1674-4926/40/1/010101

[8]

Meng Gong, Yanan Chen, Wancheng Yu, Peng Jin, Zhanguo Wang, Zhimin Wang, Shenjin Zhang, Feng Yang, Fengfeng Zhang, Qinjun Peng, Zuyan Xu. The effect of oxygen on the epitaxial growth of diamond. J. Semicond., 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004

[9]

Du Yuanyuan, Jie Wanqi, Li Huanyong. Synthesis of ZnS whiskers and their photoluminescence properties. J. Semicond., 2009, 30(8): 083005. doi: 10.1088/1674-4926/30/8/083005

[10]

Tan Weidong, Tang Youqing, Ma Lixing, Luo Hong, Zhang Wenqing, Gao Tao. High Resistivity and Thick Epitaxial Layer of n-Type on Low Resistivity p-Type Substrates. J. Semicond., 2006, 27(S1): 183.

[11]

Wang Lei, Sun Guosheng, Gao Xin, Zhao Wanshun, Zhang Yongxing, Zeng Yiping, Li Jinmin. LPCVD Homoepitaxial Growth on Off-Axis Si-Face 4H-SiC(0001) Substrates. J. Semicond., 2005, 26(S1): 113.

[12]

Liu Jianjun, Yan Jinliang, Shi Liang, Li Ting. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering. J. Semicond., 2010, 31(10): 103001. doi: 10.1088/1674-4926/31/10/103001

[13]

Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J. Semicond., 2019, 40(1): 012801. doi: 10.1088/1674-4926/40/1/012801

[14]

Chengyang Xu, Jinliang Yan, Chao Li, Huihui Zhuang. The effect of the multi-period on the properties of deep-ultraviolet transparent conductive Ga2O3/ITO alternating multilayer films. J. Semicond., 2013, 34(10): 103004. doi: 10.1088/1674-4926/34/10/103004

[15]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[16]

Meng Hui, Wang Cong. Growth and Characterization of Zn Doped SnO2 Nanowires. J. Semicond., 2007, 28(S1): 267.

[17]

Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J. Semicond., 2019, 40(1): 011805. doi: 10.1088/1674-4926/40/1/011805

[18]

Jun Hu, Hongyuan Wei, Shaoyan Yang, Chengming Li, Huijie Li, Xianglin Liu, Lianshan Wang, Zhanguo Wang. Hydride vapor phase epitaxy for gallium nitride substrate. J. Semicond., 2019, 40(7): 000000.

[19]

Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment. J. Semicond., 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806

[20]

, , , , , , , , . . J. Semicond., 2005, 26(4): 641.

Search

Advanced Search >>

GET CITATION

T C Ma, X H Chen, F F Ren, S M Zhu, S L Gu, R Zhang, Y D Zheng, J D Ye, Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique[J]. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804.

Export: BibTex EndNote

Article Metrics

Article views: 811 Times PDF downloads: 85 Times Cited by: 0 Times

History

Manuscript received: 01 August 2018 Manuscript revised: 13 September 2018 Online: Accepted Manuscript: 06 December 2018 Uncorrected proof: 13 December 2018 Published: 07 January 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误