J. Semicond. > Volume 40 > Issue 6 > Article Number: 062005

Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys

Fang Liang 1, , Hejun Xu 1, , Zuoyuan Dong 1, , Yafeng Xie 2, , Chen Luo 1, , Yin Xia 1, , Jian Zhang 1, , Jun Wang 2, and Xing Wu 1, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Two-dimensional (2D) transition metal dichalcogenides alloys are potential materials in the application of photodetectors over a wide spectral range due to their composition-dependent bandgaps. The study of bandgap engineering is important for the application of 2D materials in devices. Here, we grow the Mo1−xWxSe2 alloys on mica, sapphire and SiO2/Si substrates by chemical vapor deposition (CVD) method. Mo1−xWxSe2 alloys are grown on the mica substrates by CVD method for the first time. Photoluminescence (PL) spectroscopy is used to investigate the effects of substrates and interlayer coupling force on the optical bandgaps of as-grown Mo1−xWxSe2 alloys. We find that the substrates used in this work have an ignorable effect on the optical bandgaps of as-grown Mo1−xWxSe2. The interlayer coupling effect on the optical bandgaps of as-grown Mo1−xWxSe2 is larger than the substrates effect. These findings provide a new way for the future study of the growth and physical properties of 2D alloy materials.

Key words: Mo1−xWxSe2substratestwo-dimensional materialsbandgapsphotoluminescence

Abstract: Two-dimensional (2D) transition metal dichalcogenides alloys are potential materials in the application of photodetectors over a wide spectral range due to their composition-dependent bandgaps. The study of bandgap engineering is important for the application of 2D materials in devices. Here, we grow the Mo1−xWxSe2 alloys on mica, sapphire and SiO2/Si substrates by chemical vapor deposition (CVD) method. Mo1−xWxSe2 alloys are grown on the mica substrates by CVD method for the first time. Photoluminescence (PL) spectroscopy is used to investigate the effects of substrates and interlayer coupling force on the optical bandgaps of as-grown Mo1−xWxSe2 alloys. We find that the substrates used in this work have an ignorable effect on the optical bandgaps of as-grown Mo1−xWxSe2. The interlayer coupling effect on the optical bandgaps of as-grown Mo1−xWxSe2 is larger than the substrates effect. These findings provide a new way for the future study of the growth and physical properties of 2D alloy materials.

Key words: Mo1−xWxSe2substratestwo-dimensional materialsbandgapsphotoluminescence



References:

[1]

Zhang G, Huang S, Chaves A, et al. Infrared fingerprints of few-layer black phosphorus. Nat Commun, 2017, 8, 14071

[2]

Mogi M, Kawamura M, Yoshimi R, et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat Mater, 2017, 16(5), 516

[3]

Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9(2), 111

[4]

Bertolazzi S, Gobbi M, Zhao Y, et al. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chem Soc Rev, 2018, 47(17), 6845

[5]

Manimunda P, Nakanishi Y, Jaques Y M, et al. Nanoscale deformation and friction characteristics of atomically thin WSe2 and heterostructure using nanoscratch and Raman spectroscopy. 2D Mater, 2017, 4(4), 045005

[6]

Wang C, Wu X, Ma Y, et al. Metallic few-layered VSe2 nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors. J Mater Chem A, 2018, 6(18), 8299

[7]

Xiao S, Xiao P, Zhang X, et al. Atomic-layer soft plasma etching of MoS2. Sci Rep, 2016, 6, 19945

[8]

Zhang X, Nan H, Xiao S, et al. Shape-uniform, high-quality monolayered MoS2 crystals for gate-tunable photoluminescence. ACS Appl Mater Inter, 2017, 9(48), 42121

[9]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon flims. Science, 2004, 306(5686), 666

[10]

Zheng Z, Yao J, Yang G. Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl Mater Inter, 2017, 9(17), 14920

[11]

Liu J, Zhong M, Liu X, et al. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotech, 2018, 29(47), 474002

[12]

Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett, 2013, 13(6), 2615

[13]

Yao J, Zheng Z, Yang G. Promoting the performance of layered-material photodetectors by alloy engineering. ACS Appl Mater Inte, 2016, 8(20), 12915

[14]

Lu C P, Li G, Mao J, et al. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett, 2014, 14(8), 4628

[15]

Kang J, Tongay S, Li J, et al. Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J Appl Phys, 2013, 113(14), 143703

[16]

Peng Q, De S. Tunable band gaps of mono-layer hexagonal BNC heterostructures. Physica E, 2012, 44(7/8), 1662

[17]

Ye J, Niu B, Li Y, et al. Exciton valley dynamics in monolayer Mo1− xWxSe2 (x = 0, 0.5, 1). Appl Phys Lett, 2017, 111(15), 152106

[18]

Zhang C, Kc S, Nie Y, et al. Charge mediated reversible metal−insulator transition in monolayer MoTe2 and W xMo1− xTe2 alloy. ACS Nano, 2016, 10(8), 7370

[19]

Livneh T, Dumcenco D O, Pinkas I. Determining alloy composition in Mo xW(1− x)S2 from low wavenumber Raman spectroscopy. J Raman Spectrosc, 2017, 48(5), 773

[20]

Li H, Zhang Q, Duan X, et al. Lateral growth of composition graded atomic layer MoS(2(1− x))Se(2 x) nanosheets. J Am Chem Soc, 2015, 137(16), 5284

[21]

Liu J, Liu X, Chen Z, et al. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Res, 2018, 12(2), 463

[22]

Li H, Duan X, Wu X, et al. Growth of alloy MoS(2 x)Se2(1− x) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc, 2014, 136(10), 3756

[23]

Duan X, Wang C, Fan Z, et al. Synthesis of WS2 xSe2−2 x alloy nanosheets with composition-tunable electronic properties. Nano Lett, 2016, 16(1), 264

[24]

Chen Y, Dumcenco D O, Zhu Y, et al. Composition-dependent Raman modes of Mo(1− x)W( x)S2 monolayer alloys. Nanoscale, 2014, 6(5), 2833

[25]

Dumcenco D O, Kobayashi H , Liu Z, et al. Visualization and quantification of transition metal atomic mixing in Mo1− xWxSe2 single layers. Nat Commun, 2013, 4, 1351

[26]

Song J G, Ryu G H, Lee S J, et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat Commun, 2015, 6, 7817

[27]

Dumcenco D O, Chen K Y, Wang Y P, et al. Raman study of 2H-Mo1− xWxS2 layered mixed crystals. J Alloy Compd, 2010, 506(2), 940

[28]

Zhang X, Xiao S, Shi L, et al. Large-size Mo1− xWxS2 and Mo1− xWxS2 (x = 0−0.5) monolayers by confined-space chemical vapor deposition. Appl Surf Sci, 2018, 457, 591

[29]

Ke T Y, Hsu H P, Wang Y P, et al. Temperature dependent piezoreflectance study of Mo1− xWxSe2 layered crystals. J Appl Phys, 2015, 118(21), 215704

[30]

Yarali M, Brahmi H, Yan Z, et al. Effect of metal doping and vacancies on the thermal conductivity of monolayer molybdenum diselenide. ACS Appl Mater Inter, 2018, 10(5), 4921

[31]

Xu H, Wu X, Li X, et al. Properties of graphene-metal contacts probed by Raman spectroscopy. Carbon, 2018, 127, 491

[32]

Liang F, Xu H, Wu X, et al. Raman spectroscopy characterization of two-dimensional materials. Chin Phys B, 2018, 27(3), 037802

[33]

Luo C, Wang C, Wu X, et al. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small, 2017, 13(35), 1604259

[34]

Xia J, Huang X, Liu L Z, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6(15), 8949

[35]

Huang J, Yang L, Liu D, et al. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale, 2015, 7(9), 4193

[1]

Zhang G, Huang S, Chaves A, et al. Infrared fingerprints of few-layer black phosphorus. Nat Commun, 2017, 8, 14071

[2]

Mogi M, Kawamura M, Yoshimi R, et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat Mater, 2017, 16(5), 516

[3]

Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9(2), 111

[4]

Bertolazzi S, Gobbi M, Zhao Y, et al. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chem Soc Rev, 2018, 47(17), 6845

[5]

Manimunda P, Nakanishi Y, Jaques Y M, et al. Nanoscale deformation and friction characteristics of atomically thin WSe2 and heterostructure using nanoscratch and Raman spectroscopy. 2D Mater, 2017, 4(4), 045005

[6]

Wang C, Wu X, Ma Y, et al. Metallic few-layered VSe2 nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors. J Mater Chem A, 2018, 6(18), 8299

[7]

Xiao S, Xiao P, Zhang X, et al. Atomic-layer soft plasma etching of MoS2. Sci Rep, 2016, 6, 19945

[8]

Zhang X, Nan H, Xiao S, et al. Shape-uniform, high-quality monolayered MoS2 crystals for gate-tunable photoluminescence. ACS Appl Mater Inter, 2017, 9(48), 42121

[9]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon flims. Science, 2004, 306(5686), 666

[10]

Zheng Z, Yao J, Yang G. Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl Mater Inter, 2017, 9(17), 14920

[11]

Liu J, Zhong M, Liu X, et al. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotech, 2018, 29(47), 474002

[12]

Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett, 2013, 13(6), 2615

[13]

Yao J, Zheng Z, Yang G. Promoting the performance of layered-material photodetectors by alloy engineering. ACS Appl Mater Inte, 2016, 8(20), 12915

[14]

Lu C P, Li G, Mao J, et al. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett, 2014, 14(8), 4628

[15]

Kang J, Tongay S, Li J, et al. Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J Appl Phys, 2013, 113(14), 143703

[16]

Peng Q, De S. Tunable band gaps of mono-layer hexagonal BNC heterostructures. Physica E, 2012, 44(7/8), 1662

[17]

Ye J, Niu B, Li Y, et al. Exciton valley dynamics in monolayer Mo1− xWxSe2 (x = 0, 0.5, 1). Appl Phys Lett, 2017, 111(15), 152106

[18]

Zhang C, Kc S, Nie Y, et al. Charge mediated reversible metal−insulator transition in monolayer MoTe2 and W xMo1− xTe2 alloy. ACS Nano, 2016, 10(8), 7370

[19]

Livneh T, Dumcenco D O, Pinkas I. Determining alloy composition in Mo xW(1− x)S2 from low wavenumber Raman spectroscopy. J Raman Spectrosc, 2017, 48(5), 773

[20]

Li H, Zhang Q, Duan X, et al. Lateral growth of composition graded atomic layer MoS(2(1− x))Se(2 x) nanosheets. J Am Chem Soc, 2015, 137(16), 5284

[21]

Liu J, Liu X, Chen Z, et al. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Res, 2018, 12(2), 463

[22]

Li H, Duan X, Wu X, et al. Growth of alloy MoS(2 x)Se2(1− x) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc, 2014, 136(10), 3756

[23]

Duan X, Wang C, Fan Z, et al. Synthesis of WS2 xSe2−2 x alloy nanosheets with composition-tunable electronic properties. Nano Lett, 2016, 16(1), 264

[24]

Chen Y, Dumcenco D O, Zhu Y, et al. Composition-dependent Raman modes of Mo(1− x)W( x)S2 monolayer alloys. Nanoscale, 2014, 6(5), 2833

[25]

Dumcenco D O, Kobayashi H , Liu Z, et al. Visualization and quantification of transition metal atomic mixing in Mo1− xWxSe2 single layers. Nat Commun, 2013, 4, 1351

[26]

Song J G, Ryu G H, Lee S J, et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat Commun, 2015, 6, 7817

[27]

Dumcenco D O, Chen K Y, Wang Y P, et al. Raman study of 2H-Mo1− xWxS2 layered mixed crystals. J Alloy Compd, 2010, 506(2), 940

[28]

Zhang X, Xiao S, Shi L, et al. Large-size Mo1− xWxS2 and Mo1− xWxS2 (x = 0−0.5) monolayers by confined-space chemical vapor deposition. Appl Surf Sci, 2018, 457, 591

[29]

Ke T Y, Hsu H P, Wang Y P, et al. Temperature dependent piezoreflectance study of Mo1− xWxSe2 layered crystals. J Appl Phys, 2015, 118(21), 215704

[30]

Yarali M, Brahmi H, Yan Z, et al. Effect of metal doping and vacancies on the thermal conductivity of monolayer molybdenum diselenide. ACS Appl Mater Inter, 2018, 10(5), 4921

[31]

Xu H, Wu X, Li X, et al. Properties of graphene-metal contacts probed by Raman spectroscopy. Carbon, 2018, 127, 491

[32]

Liang F, Xu H, Wu X, et al. Raman spectroscopy characterization of two-dimensional materials. Chin Phys B, 2018, 27(3), 037802

[33]

Luo C, Wang C, Wu X, et al. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small, 2017, 13(35), 1604259

[34]

Xia J, Huang X, Liu L Z, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6(15), 8949

[35]

Huang J, Yang L, Liu D, et al. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale, 2015, 7(9), 4193

[1]

Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.

[2]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[3]

Guo Hengqun, Lin Shangxin, Wang Qiming. Photoluminescence and Application of Nonlinear Optical Property of nc-Si-SiO2 Films. J. Semicond., 2006, 27(2): 345.

[4]

Ma Zhongyuan, Han Peigao, Li Wei, Chen San, Qian Bo, Xu Jun, Xu Ling, Huang Xinfan, Chen Kunji, Feng Duan. Photoluminescence During the Crystallization of a-Si∶H/SiO2 Multilayers. J. Semicond., 2006, 27(S1): 76.

[5]

Xia Yan, Wang Junzhuan, Shi Zhuoqiong, Shi Yi, Pu Lin, Zhang Rong, Zheng Youdou, Tao Zhensheng, Lu Fang. Photoluminescence Properties of Er-Doped HfO2 Films. J. Semicond., 2007, 28(9): 1388.

[6]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[7]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[8]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[9]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[10]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[11]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[12]

Zheng Weimin, Li Sumei, Lü Yingbo, Wang Aifang, Wu Ailing. Photoluminescence of the Beryllium Acceptor at the Centre of Quantum Wells. J. Semicond., 2008, 29(11): 2115.

[13]

Jiang Ran, Xie Erqing, Jia Changwen, Lin Hongfeng, Pan Xiaojun, Li Hui. Photoluminescence Characterization of HfON∶Tb Films with Sputtering. J. Semicond., 2006, 27(S1): 169.

[14]

Zhang Linli, Guo Changxin, Chen Jiangang, Hu Juntao. Solution Growth of Morphology Controllable ZnO One-Dimensional Nanorods and Microrods. J. Semicond., 2005, 26(11): 2127.

[15]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[16]

Z. Mouffak, A. Bensaoula, L. Trombetta. A photoluminescence study of plasma reactive ion etching-induced damage in GaN. J. Semicond., 2014, 35(11): 113003. doi: 10.1088/1674-4926/35/11/113003

[17]

Wei Li, Peng Jin, Weiying Wang, Defeng Mao, Guipeng Liu, Zhanguo Wang, Jiaming Wang, Fujun Xu, Bo Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys. J. Semicond., 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001

[18]

Wu Chunxia, Lü Youming, Shen Dezhen, Fan Xiwu, Zhou Ming, Cai Lan. Phase Structure Transition and Optical Properties of MgxZn1-xO Alloy. J. Semicond., 2007, 28(5): 701.

[19]

Xiang Fang, Yi Gu, Xingyou Chen, Li Zhou, Yuanying Cao, Haosibaiyin Li, Yonggang Zhang. InP-based InxGa1-xAs metamorphic buffers with different mismatch grading rates. J. Semicond., 2013, 34(7): 073005. doi: 10.1088/1674-4926/34/7/073005

[20]

Xu Linhua, Li Xiangyin, Shi Linxing, Shen Hua. Effect of Annealing Temperature on ZnO Thin Film Grown on a TiO2 Buffer Layer. J. Semicond., 2008, 29(10): 1992.

Search

Advanced Search >>

GET CITATION

F Liang, H J Xu, Z Y Dong, Y F Xie, C Luo, Y Xia, J Zhang, J Wang, X Wu, Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys[J]. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005.

Export: BibTex EndNote

Article Metrics

Article views: 496 Times PDF downloads: 29 Times Cited by: 0 Times

History

Manuscript received: 12 January 2019 Manuscript revised: 27 February 2019 Online: Accepted Manuscript: 24 April 2019 Uncorrected proof: 29 May 2019 Published: 05 June 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误