J. Semicond. > Volume 40 > Issue 8 > Article Number: 081504

High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems

Bo Gu 1, 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted magnetic semiconductors are few. Using a combined method of the density function theory and quantum Monte Carlo simulation, we briefly discuss the recent progress to obtain diluted magnetic semiconductors with both p- and n-type carriers by choosing host semiconductors with a narrow band gap. In addition, the recent progress on two-dimensional intrinsic magnetic semiconductors with possible room temperature ferromangetism and quantum anomalous Hall effect are also discussed.

Key words: magnetic semiconductornarrow band gaptwo dimensional systems

Abstract: Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted magnetic semiconductors are few. Using a combined method of the density function theory and quantum Monte Carlo simulation, we briefly discuss the recent progress to obtain diluted magnetic semiconductors with both p- and n-type carriers by choosing host semiconductors with a narrow band gap. In addition, the recent progress on two-dimensional intrinsic magnetic semiconductors with possible room temperature ferromangetism and quantum anomalous Hall effect are also discussed.

Key words: magnetic semiconductornarrow band gaptwo dimensional systems



References:

[1]

Maekawa S. Concepts in spin electronics. Oxford University Press, 2006

[2]

Maekawa S, Valenzuela S O, Saitoh E, et al. Spin current. Oxford University Press, 2012

[3]

Kenney D, Norman C. What don’t we know. Science, 2005, 309, 75

[4]

Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951

[5]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965

[6]

Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584

[7]

Masek J, Kudrnovsky J, Maca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 2007, 98, 067202

[8]

Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422

[9]

Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203

[10]

Ding C, Man H, Qin C, et al. (La1– xBa x)(Zn1– xMn x)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102

[11]

Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the 122 iron-based superconductors. Nat Commun, 2013, 4, 1442

[12]

Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524

[13]

Glasbrenner J K, Zutic I, Mazin I I. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 2014, 90, 140403

[14]

Suzuki H, Zhao K, Shibata G, et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1– xK x(Zn1– yMn y)2As2. Phys Rev B, 2015, 91, 140401

[15]

Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1– xK x- (Zn1– yMn y)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92, 235120

[16]

Guo S, Man H, Ding C, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201

[17]

Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202

[18]

Gu B, Maekawa S. New p- and n-type ferromagnetic semiconductors: Cr-doped BaZn2As2. AIP Adv, 2017, 7, 055805

[19]

Gu B, Bulut N, Maekawa S. Crystal structure effect on the ferromagnetic correlations in ZnO with magnetic impurities. J Appl Phys, 2008, 104, 103906

[20]

Ohe J, Tomoda Y, Bulut N, et al. Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors. J Phys Soc Jpn, 2009, 78, 083703

[21]

Gu B, Bulut, Ziman N T, et al. Possible d0 ferromagnetism in MgO doped with nitrogen. Phys Rev B, 2009, 79, 024407

[22]

Ichimura M, Tanikawa K, Takahashi S, et al. Foundations of quantum mechanics in the light of new technology. Edited by S Ishioka, K Fujikawa. Singapore: World Scientific, 2006, 183

[23]

Bulut N, Tanikawa K, Takahashi S, et al. Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host: Quantum Monte Carlo simulations. Phys Rev B, 2007, 76, 045220

[24]

Tomoda Y, Bulut N, Maekawa S. Inter-impurity and impurity-host magnetic correlations in semiconductors with low-density transition-metal impurities. Physica B, 2009, 404, 1159

[25]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[26]

Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[27]

Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289

[28]

O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125

[29]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864

[30]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, A1133

[31]

Hirsch J E, Fye R M. Monte Carlo method for magnetic impurities in metals. Phys Rev Lett, 1986, 56, 2521

[32]

Gu B, Gan J Y, Bulut N, et al. Quantum renormalization of the spin Hall effect. Phys Rev Lett, 2010, 105, 086401

[33]

Gu B, Sugai I, Ziman T, et al. Surface-assisted spin Hall effect in Au films with Pt impurities. Phys Rev Lett, 2010, 105, 216401

[34]

Xu Z, Gu B, Mori M, et al. Sign change of the spin Hall effect due to electron correlation in nonmagnetic CuIr alloys. Phys Rev Lett, 2015, 114, 017202

[35]

Haldane F D M, Anderson P W. Simple model of multiple charge states of transition-metal impurities in semiconductors. Phys Rev B, 1976, 13, 2553

[36]

Blaha P, Schwart K, Hadsen G K H, et al. WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, 2001

[37]

Tran F, Blaha P. Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys Rev B, 2011, 83, 235118

[38]

Shein I R, Ivanovskii A L. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations. J Alloys Compd, 2014, 583, 100

[39]

Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12, 014020

[40]

You J Y, Zhang Z, Gu B, et al. Two-dimensional room temperature ferromagnetic semiconductors with quantum anomalous Hall effect. arXiv: 1904.11357

[41]

Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb. Appl Phys Lett, 2016, 108, 192401

[42]

Tu N T, Hai P N, Anh L D, et al. A new class of ferromagnetic semiconductors with high Curie temperatures. arXiv: 1706.00735

[43]

Kudrin A V, Danilov Y A, Lesnikov V P, et al. High-temperature intrinsic ferromagnetism in the (In,Fe)Sb semiconductor. J Appl Phys, 2017, 122, 183901

[44]

Tu N T, Hai P N, Anh L D, et al. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature. Appl Phys Lett, 2018, 112, 122409

[45]

Burch K S, Mandrus D, Park J G. Magnetism in two-dimensional van der Waals materials. Nature, 2018, 563, 47

[1]

Maekawa S. Concepts in spin electronics. Oxford University Press, 2006

[2]

Maekawa S, Valenzuela S O, Saitoh E, et al. Spin current. Oxford University Press, 2012

[3]

Kenney D, Norman C. What don’t we know. Science, 2005, 309, 75

[4]

Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951

[5]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965

[6]

Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584

[7]

Masek J, Kudrnovsky J, Maca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 2007, 98, 067202

[8]

Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422

[9]

Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203

[10]

Ding C, Man H, Qin C, et al. (La1– xBa x)(Zn1– xMn x)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102

[11]

Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the 122 iron-based superconductors. Nat Commun, 2013, 4, 1442

[12]

Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524

[13]

Glasbrenner J K, Zutic I, Mazin I I. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 2014, 90, 140403

[14]

Suzuki H, Zhao K, Shibata G, et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1– xK x(Zn1– yMn y)2As2. Phys Rev B, 2015, 91, 140401

[15]

Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1– xK x- (Zn1– yMn y)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92, 235120

[16]

Guo S, Man H, Ding C, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201

[17]

Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202

[18]

Gu B, Maekawa S. New p- and n-type ferromagnetic semiconductors: Cr-doped BaZn2As2. AIP Adv, 2017, 7, 055805

[19]

Gu B, Bulut N, Maekawa S. Crystal structure effect on the ferromagnetic correlations in ZnO with magnetic impurities. J Appl Phys, 2008, 104, 103906

[20]

Ohe J, Tomoda Y, Bulut N, et al. Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors. J Phys Soc Jpn, 2009, 78, 083703

[21]

Gu B, Bulut, Ziman N T, et al. Possible d0 ferromagnetism in MgO doped with nitrogen. Phys Rev B, 2009, 79, 024407

[22]

Ichimura M, Tanikawa K, Takahashi S, et al. Foundations of quantum mechanics in the light of new technology. Edited by S Ishioka, K Fujikawa. Singapore: World Scientific, 2006, 183

[23]

Bulut N, Tanikawa K, Takahashi S, et al. Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host: Quantum Monte Carlo simulations. Phys Rev B, 2007, 76, 045220

[24]

Tomoda Y, Bulut N, Maekawa S. Inter-impurity and impurity-host magnetic correlations in semiconductors with low-density transition-metal impurities. Physica B, 2009, 404, 1159

[25]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[26]

Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[27]

Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289

[28]

O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125

[29]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864

[30]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, A1133

[31]

Hirsch J E, Fye R M. Monte Carlo method for magnetic impurities in metals. Phys Rev Lett, 1986, 56, 2521

[32]

Gu B, Gan J Y, Bulut N, et al. Quantum renormalization of the spin Hall effect. Phys Rev Lett, 2010, 105, 086401

[33]

Gu B, Sugai I, Ziman T, et al. Surface-assisted spin Hall effect in Au films with Pt impurities. Phys Rev Lett, 2010, 105, 216401

[34]

Xu Z, Gu B, Mori M, et al. Sign change of the spin Hall effect due to electron correlation in nonmagnetic CuIr alloys. Phys Rev Lett, 2015, 114, 017202

[35]

Haldane F D M, Anderson P W. Simple model of multiple charge states of transition-metal impurities in semiconductors. Phys Rev B, 1976, 13, 2553

[36]

Blaha P, Schwart K, Hadsen G K H, et al. WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, 2001

[37]

Tran F, Blaha P. Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys Rev B, 2011, 83, 235118

[38]

Shein I R, Ivanovskii A L. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations. J Alloys Compd, 2014, 583, 100

[39]

Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12, 014020

[40]

You J Y, Zhang Z, Gu B, et al. Two-dimensional room temperature ferromagnetic semiconductors with quantum anomalous Hall effect. arXiv: 1904.11357

[41]

Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb. Appl Phys Lett, 2016, 108, 192401

[42]

Tu N T, Hai P N, Anh L D, et al. A new class of ferromagnetic semiconductors with high Curie temperatures. arXiv: 1706.00735

[43]

Kudrin A V, Danilov Y A, Lesnikov V P, et al. High-temperature intrinsic ferromagnetism in the (In,Fe)Sb semiconductor. J Appl Phys, 2017, 122, 183901

[44]

Tu N T, Hai P N, Anh L D, et al. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature. Appl Phys Lett, 2018, 112, 122409

[45]

Burch K S, Mandrus D, Park J G. Magnetism in two-dimensional van der Waals materials. Nature, 2018, 563, 47

[1]

Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003

[2]

Yunchang Xiao, Changyong Zhu, Rixing Wang. Arbitrary magnetic field modulations to a semiconductor pump with two types of spin-orbit couplings. J. Semicond., 2016, 37(1): 014009. doi: 10.1088/1674-4926/37/1/014009

[3]

Eerdunchaolu, Wuyunqimuge, Xu Qiu, Bai Xufang. Properties of Quasi-Two-Dimensional Strong-CouplingMagnetopolarons in Magnetic Fields. J. Semicond., 2006, 27(5): 824.

[4]

P. Christina Lily Jasmine, A. John Peter. Magneto-polaron induced intersubband optical transition in a wide band gap II—VI semiconductor quantum dot. J. Semicond., 2015, 36(3): 032001. doi: 10.1088/1674-4926/36/3/032001

[5]

Yun Kang, Sheng Wang, Xianli Li. Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. J. Semicond., 2015, 36(3): 032003. doi: 10.1088/1674-4926/36/3/032003

[6]

Chanchan Luo, Ruiying Zhang, Bocang Qiu, Wei Wang. Waveguide external cavity narrow linewidth semiconductor lasers. J. Semicond., 2020, 41(0): -1.

[7]

Yue Li, Ming Gong, Hualing Zeng. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor. J. Semicond., 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002

[8]

Mianzeng Zhong, Jun He. A new single-element layered two-dimensional semiconductor: black arsenic. J. Semicond., 2020, 41(8): 080402. doi: 10.1088/1674-4926/41/8/080402

[9]

Bai Xianping, Ban Shiliang. Pressure Effect on Electronic Mobility in Quasi-Two-Dimensional AlxGa1-xAs/GaAs Heterojunction Systems. J. Semicond., 2005, 26(12): 2422.

[10]

Junyi Zhu . Direct or indirect band gap. J. Semicond., 2019, 40(3): 030202. doi: 10.1088/1674-4926/40/3/030202

[11]

Gong Chunjuan, Hu Xiongwei. Large Two-Dimensional Photonic Band-Gaps Designed by Rapid Genetic Algorithms. J. Semicond., 2006, 27(6): 1098.

[12]

Dang Suihu, Han Peide, Li Chunxia, Jia Wei, Chi Mei, Liu Xuguang, Xu Bingshe. Band Gaps of Two-Dimensional Photonic Crystal Structure Using InP Films. J. Semicond., 2007, 28(S1): 179.

[13]

Binbin Jie, Tianhui Jie, Chihtang Sah. Studies of Water VI. One-Band, Two-Band and Three-Band, Trappy, Protonic, Semiconductor Lattice Models for Pure Liquid Water. J. Semicond., 2018, 39(11): 111001. doi: 10.1088/1674-4926/39/11/111001

[14]

Chen Bin, Yang Yintang, Chai Changchun, Song Kun, Ma Zhenyang. Two-dimensional numerical computation of the structure-dependent spectral response in a 4H-SiC metal–semiconductor–metal ultraviolet photodetector with consideration of reflection and absorption on contact electrodes. J. Semicond., 2011, 32(8): 084001. doi: 10.1088/1674-4926/32/8/084001

[15]

P. Paradeo. Magnetic polarization of a Mn-doped semiconductor nanostructure controlled by an external bias. J. Semicond., 2015, 36(7): 073002. doi: 10.1088/1674-4926/36/7/073002

[16]

Ali Arif, Okba Belahssen, Salim Gareh, Said Benramache. The calculation of band gap energy in zinc oxide films. J. Semicond., 2015, 36(1): 013001. doi: 10.1088/1674-4926/36/1/013001

[17]

Le Huang, Nengjie Huo, Zhaoqiang Zheng, Huafeng Dong, Jingbo Li. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr3/MoSe2. J. Semicond., 2020, 41(5): 052206. doi: 10.1088/1674-4926/41/5/052206

[18]

Sanghoon Lee, Sunjae Chung, Hakjoon Lee, Xinyu Liu, M. Dobrowolska, J. K. Furdyna. Interlayer exchange coupling in (Ga,Mn)As ferromagnetic semiconductor multilayer systems. J. Semicond., 2019, 40(8): 081503. doi: 10.1088/1674-4926/40/8/081503

[19]

Zhong Ma, Desheng Kong, Lijia Pan, Zhenan Bao. Skin-inspired electronics: emerging semiconductor devices and systems. J. Semicond., 2020, 41(4): 041601. doi: 10.1088/1674-4926/41/4/041601

[20]

Sh. G. Askerov, L. K. Abdullayeva, M. G. Hasanov. Study of electrophysical properties of metal–semiconductor contact by the theory of complex systems. J. Semicond., 2020, 41(10): 102101. doi: 10.1088/1674-4926/41/10/102101

Search

Advanced Search >>

GET CITATION

B Gu, High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems[J]. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504.

Export: BibTex EndNote

Article Metrics

Article views: 1725 Times PDF downloads: 125 Times Cited by: 0 Times

History

Manuscript received: 05 June 2019 Manuscript revised: 14 June 2019 Online: Accepted Manuscript: 10 July 2019 Uncorrected proof: 10 July 2019 Published: 09 August 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误