REVIEWS

Advances in new generation diluted magnetic semiconductors with independent spin and charge doping

Guoqiang Zhao1, 2, Zheng Deng1, 2 and Changqing Jin1, 2,

+ Author Affiliations

 Corresponding author: Changqing Jin, Email: Jin@iphy.ac.cn

PDF

Turn off MathJax

Abstract: As one branch of spintronics, diluted magnetic semiconductors (DMSs) are extensively investigated due to their fundamental significance and potential application in modern information society. The classical materials (Ga,Mn)As of III–V group based DMSs has been well studied for its high compatibility with the high-mobility semiconductor GaAs. But the Curie temperature in (Ga,Mn)As film is still far below room temperature because the spin & charge doping is bundled to the same element that makes the fabrication very difficult. Alternatively, the discovery of a new generation DMSs with independent spin and charge doping, such as (Ba,K)(Zn,Mn)2As2 (briefly named BZA), attracted considerable attention due to their unique advantages in physical properties and heterojunction fabrication. In this review we focus on this series of new DMSs including (I) materials in terms of three types of new DMSs, i.e. the " 111”, " 122” and " 1111” system; (II) the physical properties of BZA; (III) single crystals & prototype device based on BZA. The prospective of new type of DMSs with independent spin and charge doping is briefly discussed.

Key words: diluted magnetic semiconductorsindependent spin and charge dopinghigh Curie temperature



[1]
Hamaguchi C. Basic semiconductor physics. Springer, 2001
[2]
Mack C A. Fifty years of Moore's law. IEEE Trans Semicond Manufac, 2011, 24, 202 doi: 10.1109/TSM.2010.2096437
[3]
Žutić I, Fabian J, Das Sarma S. Spintronics fundamentals and applications. Rev Mod Phys, 2004, 76, 323 doi: 10.1103/RevModPhys.76.323
[4]
Žutić I, Zhou T. Tailoring magnetism in semiconductors. Sci Chin Phys, Mechan Astronom, 2018, 61, 067031 doi: 10.1007/s11433-018-9191-0
[5]
McGuire T R, Argyle B E, Shafer M W, et al. Magnetic properties of some divalent europium compounds. J Appl Phys, 1963, 34, 1345 doi: 10.1063/1.1729501
[6]
Berger S B, Pinch H L. Ferromagnetic resonance of single crystals of CdCr2S4 and CdCr2Se4. J Appl Phys, 1967, 38, 949 doi: 10.1063/1.1709697
[7]
Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64, R29 doi: 10.1063/1.341700
[8]
Story T, Galazka R R, Frankel R B, et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 1986, 56, 777 doi: 10.1103/PhysRevLett.56.777
[9]
Samarth N, Furdyna J K. Diluted magnetic semiconductors. Proc IEEE, 1990, 78, 990 doi: 10.1109/5.56911
[10]
Munekata H, Ohno H, von Molnar S,et al. Diluted magnetic III–V semiconductors. Phys Rev Lett, 1989, 63, 1849 doi: 10.1103/PhysRevLett.63.1849
[11]
Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[12]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[13]
Ohno H, Munekata H, Penney T, et al. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III–V semiconductors. Phys Rev Lett, 1992, 68, 2664 doi: 10.1103/PhysRevLett.68.2664
[14]
Wang M, Campion R P, Rushforth A W, et al. Achieving high Curie temperature in (Ga,Mn)As. Appl Phys Lett, 2008, 93, 132103 doi: 10.1063/1.2992200
[15]
Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 2009, 95, 182505 doi: 10.1063/1.3259821
[16]
Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[17]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1038/nmat2898
[18]
Bonanni A, Dietl T. A story of high-temperature ferromagnetism in semiconductors. Chem Soc Rev, 2010, 39, 528 doi: 10.1039/B905352M
[19]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[20]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[21]
Deng Z, Zhao K, Jin C. New types of diluted magnetic semiconductors with decoupled charge and spin doping. Physics, 2013, 42, 682
[22]
Zhao K, Chen B, Zhao G, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[23]
Bacewicz R, Ciszek T F. Preparation and characterization of some AIBIICV type semiconductors. Appl Phys Lett, 1988, 52, 1150 doi: 10.1063/1.99188
[24]
Kuriyama K, Nakamura F. Electrical transport properties and crystal structure of LiZnAs. Phys Rev B, 1987, 36, 4439 doi: 10.1103/PhysRevB.36.4439
[25]
Kuriyama K, Kato T, Kawada K. Optical band gap of the filled tetrahedral semiconductor LiZnAs. Phys Rev B, 1994, 49, 11452 doi: 10.1103/PhysRevB.49.11452
[26]
Wang X C, Liu Q Q, Lv Y X, et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 2008, 148, 538 doi: 10.1016/j.ssc.2008.09.057
[27]
Masek J, Kudrnovsky J, Maca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 2007, 98, 067202 doi: 10.1103/PhysRevLett.98.067202
[28]
Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203 doi: 10.1103/PhysRevB.88.081203
[29]
Uemura Y J, Yamazaki T, Harshman D R, et al. Muon-spin relaxation in AuFe and CuMn spin glasses. Phys Rev B, 1985, 31, 546 doi: 10.1103/PhysRevB.31.546
[30]
Dunsiger S R, Carlo J P, Goko T, et al. Spatially homogeneous ferromagnetism of (Ga,Mn)As. Nat Mater, 2010, 9, 299 doi: 10.1038/nmat2715
[31]
Uemura Y J, Goko T, Gat-Malureanu I M, et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1–xCax)RuO3. Nat Phys, 2006, 3, 29 doi: 10.1038/nphys488
[32]
Ning F L, Man H, Gong X, et al. Suppression of Tc by overdoped Li in the diluted ferromagnetic semiconductor Li1+ y(Zn1− xMn x)P: A μSR investigation. Phys Rev B, 2014, 90, 085123 doi: 10.1103/PhysRevB.90.085123
[33]
Chen B, Deng Z, Li W, et al. Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites. AIP Adv, 2016, 6, 115014 doi: 10.1063/1.4967778
[34]
Guo S L, Zhao Y, Man H Y, et al. μSR investigation of a new diluted magnetic semiconductor Li(Zn,Mn,Cu)As with Mn and Cu codoping at the same Zn sites. J Phys Condens Matter, 2016, 28, 366001 doi: 10.1088/0953-8984/28/36/366001
[35]
Sun F, Xu C, Yu S, et al. Synchrotron X-ray diffraction studies on the new generation ferromagnetic semiconductor Li(Zn,Mn)As under high pressure. Chin Phys Lett, 2017, 34, 067501 doi: 10.1088/0256-307X/34/6/067501
[36]
Han W, Chen B J, Gu B, et al. Li(Cd,Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping. Sci Rep, 2019, 9, 7490 doi: 10.1038/s41598-019-43754-x
[37]
Matsukura F, Sawicki M, Dietl T, et al. Magnetotransport properties of metallic (Ga,Mn)As films with compressive and tensile strain. Physica E, 2004, 21, 1032 doi: 10.1016/j.physe.2003.11.165
[38]
MacDonald A H, Schiffer P, Samarth N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater, 2005, 4, 195 doi: 10.1038/nmat1325
[39]
Sasaki T, Sonoda S, Yamamoto Y, et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J Appl Phys, 2002, 91, 7911 doi: 10.1063/1.1451879
[40]
Zhao K, Chen B J, Deng Z, et al. (Ca,Na)(Zn,Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 2014, 116, 163906 doi: 10.1063/1.4899190
[41]
Chen B, Deng Z, Li W, et al. (Sr1–xNax)(Cd1–xMnx)2As2: A new charge and spin doping decoupled diluted magnetic semiconductors with CaAl2Si2-type structure. J Appl Phys, 2016, 120, 083902 doi: 10.1063/1.4961565
[42]
Chen B J, Zhao K, Deng Z, et al. (Sr,Na)(Zn,Mn)2As2: A diluted ferromagnetic semiconductor with the hexagonal CaAl2Si2 type structure. Phys Rev B, 2014, 90, 155202 doi: 10.1103/PhysRevB.90.155202
[43]
Dietl T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 2008, 77, 031005 doi: 10.1143/JPSJ.77.031005
[44]
Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La(O1–xFx) FeAs (x = 0.05−0.12) with TC = 26 K. JACS, 2008, 130, 3296 doi: 10.1021/ja800073m
[45]
Han W, Zhao K, Wang X, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to " 1111” type iron pnictide superconductors. Sci Chin Phys, Mechan Astronom, 2013, 56, 2026 doi: 10.1007/s11433-013-5320-1
[46]
Chen B J, Deng Z, Wang X C, et al. Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors. Chin Phys B, 2016, 25, 077503 doi: 10.1088/1674-1056/25/7/077503
[47]
Chen B, Deng Z, Li W, et al. New fluoride-arsenide diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with independent spin and charge doping. Sci Rep, 2016, 6, 36578 doi: 10.1038/srep36578
[48]
Bate G, Wohlfarth E. Ferromagnetic Materials. Vol. 2. Amsterdam: North-Holland Publishing Co, 1980, 381
[49]
Jungwirth T, Wunderlich J, V Novák V, et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 2014, 86, 855 doi: 10.1103/RevModPhys.86.855
[50]
Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944 doi: 10.1038/35050040
[51]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[52]
Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63, 195205 doi: 10.1103/PhysRevB.63.195205
[53]
Jungwirth T, Sinova J, Masek J, et al. Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys, 2006, 78, 809 doi: 10.1103/RevModPhys.78.809
[54]
Sato K, Bergqvist L, Kudrnovský J, et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys, 2010, 82, 1633 doi: 10.1103/RevModPhys.82.1633
[55]
Dietl T, Sato K, Fukushima T, et al. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev Modern Phys, 2015, 87, 1311 doi: 10.1103/RevModPhys.87.1311
[56]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[57]
Keavney D J, Wu D, Freeland J W, et al. Element resolved spin configuration in ferromagnetic manganese-doped gallium arsenide. Phys Rev Lett, 2003, 91, 187203 doi: 10.1103/PhysRevLett.91.187203
[58]
Beschoten B, Crowell P, Malajovich I, et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in (Ga1− xMn x)As. Phys Rev Lett, 1999, 83, 3073 doi: 10.1103/PhysRevLett.83.3073
[59]
Glasbrenner J K, Žutić I, Mazin I I. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 2014, 90, 140403 doi: 10.1103/PhysRevB.90.140403
[60]
Suzuki H, Zhao K, Shibata G, et al. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductorBa1−xKx(Zn1−yMny)2As2. Phys Rev B, 2015, 91, 140401 doi: 10.1103/PhysRevB.91.140401
[61]
Takeda Y, Kobayashi M, Okane T, et al. Nature of magnetic coupling between Mn ions in As-grown Ga1–xMnxAs studied by X-ray magnetic circular dichroism. Phys Rev Lett, 2008, 100, 247202 doi: 10.1103/PhysRevLett.100.247202
[62]
Hwang J I, Kobayashi M, Song G S, et al. X-ray magnetic circular dichroism characterization of GaN∕Ga1−xMnxN digital ferromagnetic heterostructure. Appl Phys Lett, 2007, 91
[63]
Andrieu S, Foy E, Fischer H, et al. Effect of O contamination on magnetic properties of ultrathin Mn films grown on (001) Fe. Phys Rev B, 1998, 58, 8210 doi: 10.1103/PhysRevB.58.8210
[64]
Suzuki H, Yoshida T, Ideta S, et al. Absence of superconductivity in the hole-doped Fe pnictide Ba(Fe1−xMnx)2As2: Photoemission and x-ray absorption spectroscopy studies. Phys Rev B, 2013, 88, 100501 doi: 10.1103/PhysRevB.88.100501
[65]
Burnus T, Hu Z, Hsieh H H, et al. Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy. Phys Rev B, 2008, 77, 125124 doi: 10.1103/PhysRevB.77.125124
[66]
Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p−d hybridization in the diluted magnetic semiconductor Ba1−xKx(Zn1−yMny)2As2 studied by soft x-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92, 235120 doi: 10.1103/PhysRevB.92.235120
[67]
Zhao G Q, Lin C Q, Deng Z, et al. Single crystal growth and spin polarization measurements of diluted magnetic semiconductor (BaK)(ZnMn)2As2. Sci Rep, 2017, 7, 14473 doi: 10.1038/s41598-017-08394-z
[68]
Zhao G Q, Li Z, Sun F, et al. Effects of high pressure on the ferromagnetism and in-plane electrical transport of (Ba0.904K0.096)(Zn0.805Mn0.195)2As2 single crystal. J Phys Condens Matter, 2018, 30, 254001 doi: 10.1088/1361-648X/aac367
[69]
Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys, 2010, 82, 1539 doi: 10.1103/RevModPhys.82.1539
[70]
Braden J G, Parker J S, Xiong P, et al. Direct measurement of the spin polarization of the magnetic semiconductor (Ga,Mn)As. Phys Rev Lett, 2003, 91, 056602 doi: 10.1103/PhysRevLett.91.056602
[71]
Panguluri R P, Nadgorny B, Wojtowicz T, et al. Inelastic scattering and spin polarization in dilute magnetic semiconductor (Ga,Mn)Sb. Appl Phys Lett, 2007, 91, 252502 doi: 10.1063/1.2819608
[72]
Bowen M, Bibes M, Barthélémy A, et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett, 2003, 82, 233 doi: 10.1063/1.1534619
[73]
Coey J M D, Sanvito S. Magnetic semiconductors and half-metals. J Phys D, 2004, 37, 988 doi: 10.1088/0022-3727/37/7/005
[74]
Ren C, Trbovic J, KallaheR R L, et al. Measurement of the spin polarization of the magnetic semiconductorEuSwith zero-field and Zeeman-split Andreev reflection spectroscopy. Phys Rev B, 2007, 75, 205208 doi: 10.1103/PhysRevB.75.205208
[75]
Guan T, Lin C, Yang C, et al. Evidence for half-metallicity in n-type HgCr2Se4. Phys Rev Lett, 2015, 115, 087002 doi: 10.1103/PhysRevLett.115.087002
[76]
Blonder G E, Tinkham M, Klapwijk T M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys Rev B, 1982, 25, 4515 doi: 10.1103/PhysRevB.25.4515
[77]
Gu G, Zhao G, Lin C, et al. Asperomagnetic order in diluted magnetic semiconductor (Ba,Na)(Zn,Mn)2As2. Appl Phys Lett, 2018, 112, 032402 doi: 10.1063/1.5010988
[78]
Singh Y, Green M A, Huang Q, et al. Magnetic order inBaMn2As2 from neutron diffraction measurements. Phys Rev B, 2009, 80, 100403 doi: 10.1103/PhysRevB.80.100403
[79]
Rotter M, Tegel M, Johrendt D. Superconductivity at 38 K in the iron arsenide (Ba1–xKx)Fe2As2. Phys Rev Lett, 2008, 101, 107006 doi: 10.1103/PhysRevLett.101.107006
[80]
Guo S, Man H, Wang K, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/PhysRevB.99.155201
[81]
Hirohata A, Sukegawa H, Yanagihara H, et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans Magnet, 2015, 51, 0800511 doi: 10.1109/TMAG.2015.2457393
[82]
Beleanu A, Kiss J, Kreiner G, et al. Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs. Phys Rev B, 2013, 88, 184429 doi: 10.1103/PhysRevB.88.184429
[83]
Peng Y, Yu S, Zhao G Q, et al. Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2. Chin Phys B, 2019, 28, 057501 doi: 10.1088/1674-1056/28/5/057501
[84]
Frandsen B A, Gong Z, Terban M W, et al. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)2As2. Phys Rev B, 2016, 94, 094102 doi: 10.1103/PhysRevB.94.094102
[85]
Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1−xKx)(Zn1−yMny)2As2 with independent spin and charge doping. Phys Rev B, 2016, 93, 224403 doi: 10.1103/PhysRevB.93.224403
[86]
Sun F, Zhao G Q, Escanhoela C A, et al. Hole doping and pressure effects on the II–II–V-based diluted magnetic semiconductor (Ba1−xKx)(Zn1−yMny)2As2. Phys Rev B, 2017, 95, 094412 doi: 10.1103/PhysRevB.95.094412
[87]
Surmach M A, Chen B J, Deng, et al. Weak doping dependence of the antiferromagnetic coupling between nearest-neighbor Mn2+ spins in (Ba1–xKx)(Zn1–yMny)2As2. Phys Rev B, 2018, 97, 104418 doi: 10.1103/PhysRevB.97.104418
[88]
Wang R, Huang Z X, Zhao G Q, et al. Out-of-plane easy-axis in thin films of diluted magnetic semiconductor Ba1−xKx- (Zn1−yMny)2As2. AIP Adv, 2017, 7, 045017 doi: 10.1063/1.4982713
[89]
Yang H C, Liu K, Lu Z Y. Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1–xKx)(Zn1–y Mny)2P2. Chin Phys B, 2018, 27, 067103 doi: 10.1088/1674-1056/27/6/067103
[90]
Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202 doi: 10.1103/PhysRevB.94.155202
[91]
Man H, Guo S, Sui Y, et al. Ba(Zn(1–2x)MnxCux)2As2: A bulk form diluted ferromagnetic semiconductor with Mn and Cu codoping at Zn sites. Sci Rep, 2015, 5, 15507 doi: 10.1038/srep15507
[92]
Guo S, Man H, Gong X, et al. (Ba1–xKx)(Cu2–xMnx)Se2: A copper-based bulk form diluted magnetic semiconductor with orthorhombic BaCu2S2-type structure. J Magnet Magnet Mater, 2016, 400, 295 doi: 10.1016/j.jmmm.2015.07.005
[93]
Yang X, Chen Q, Li Y, et al. Sr0.9K0.1Zn1.8Mn0.2As2: A ferromagnetic semiconductor with colossal magnetoresistance. EPL, 2014, 107, 67007 doi: 10.1209/0295-5075/107/67007
[94]
Yang J T, Luo S J, Xiong Y C. Magnetic mechanism investigations on K and Mn co-doped diluted magnetic semiconductor (Sr,K)(Zn,Mn)2As2. J Magnet Magnet Mater, 2016, 407, 334 doi: 10.1016/j.jmmm.2016.02.012
[95]
Yang X, Li Y, Zhang P, et al. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J Appl Phys, 2013, 114, 223905 doi: 10.1063/1.4842875
[96]
Emery N, Wildman E J, Skakle J M S, et al. Variable temperature study of the crystal and magnetic structures of the giant magnetoresistant materialsLMnAsO (L = La, Nd). Phys Rev B, 2011, 83, 144429 doi: 10.1103/physrevb.83.144429
[97]
Ding C, Guo S, Zhao Y, et al. The synthesis and characterization of 1111 type diluted ferromagnetic semiconductor (La1–xCax)(Zn1–xMnx)AsO. J Phys Condens Matter, 2016, 28, 026003 doi: 10.1088/0953-8984/28/2/026003
[98]
Jin C, Wang X, Liu Q, et al. New quantum matters: Build up versus high pressure tuning. Sci Chin Phy, Mechan Astronom, 2013, 56, 2337 doi: 10.1007/s11433-013-5356-2
[99]
Ding C, Man H, Qin C, et al. (La1–xBax)(Zn1–xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/PhysRevB.88.041102
[100]
Li X, Wu X, Yang J. Control of spin in a La(Mn,Zn)AsO alloy by carrier doping. J Mater Chem C, 2013, 1, 7197 doi: 10.1039/c3tc31514b
[101]
Yang X, Li Y, Shen C, et al. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200 K. Appl Phys Lett, 2013, 103, 022410 doi: 10.1063/1.4813540
[102]
Lu J, Man H, Ding C, et al. The synthesis and characterization of 1111-type diluted magnetic semiconductors (La1–xSrx)(Zn1–xTMx)AsO (TM = Mn, Fe, Co). EPL, 2013, 103, 67011 doi: 10.1209/0295-5075/103/67011
[103]
Zhao Y, Wang K, Guo S, et al. La(Zn 1–2xMnxCux)SbO: A new diluted magnetic semiconductor isostructural to 1111-type iron pnictide superconductors. EPL, 2017, 120, 47005 doi: 10.1209/0295-5075/120/47005
[104]
Guo S, Zhao Y, Gong X, et al. La(Zn1−2xMnxCux)AsO: A 1111-type diluted magnetic semiconductor with manganese and copper codoping at Zn sites. EPL, 2016, 114, 57008 doi: 10.1209/0295-5075/114/57008
[105]
Fu L, Gu Y, Guo S, et al. Ferromagnetism in fluoride-antimonide SrF(Zn1–2xMnxCux)Sb with a quasi two dimensional structure. J Magnet Magnet Mater, 2019, 483, 95 doi: 10.1016/j.jmmm.2019.03.091
Fig. 1.  (Color online) The crystal structure of (a) “111” Li(Zn,Mn)As with zinc blende structure, (b) “122” (Ba,K)(Zn,Mn)2As2 with ThCr2Si2 type structure, (c) (Sr,Na)(Zn,Mn)2As2 with CaAl2Si2 type structure, (d) “1111” (Ba,K)F(Zn,Mn)As with ZrCuSiAs structure. Adoped from Refs. [19, 20, 42, 47].

Fig. 2.  (Color online) Magnetization & transport measurements of Li(Zn,Mn)As. (a) The temperature dependence of M in H = 2 kOe (no difference in FC and ZFC procedures). (b) M at 2 K in various values of external field H from 0 to 20 kOe. The grey symbols show a hysteresis loop in x = 0.03 system plotted for smal field regions (top horizontal axis), which demonstrate a very small coercive field of 30–100 Oe. (c) Resistivity of Li1+yZnAs, showing metallic behavior of Li deficient (y < 0) and Li excess (y > 0) compounds. (d) Resistivity of Li1.1(Zn1–xMnx)As, showing the effect of increasing charge scattering with increasing Mn concentration x. (e) Resistivity of Li1.1(Zn0.9Mn0.1)As in various external field H, which exhibits negative magnetoresistance below TC ~ 50 K. (f) Hall resistivity of Li1.1(Zn0.95Mn0.05)As at 2 K, which exhibits p-type carriers with concentrations of n ~1020 cm–3 together with the anomalous Hall effect due to spontaneous magnetization at H = 0. Adoped from Ref. [19].

Fig. 3.  (Color online) Results of μSR measurements in sintered polycrystalline specimens of Li1.1(Zn0.95Mn0.05)As. (a) Time spectra in zero field that exhibit onset of extra relaxation below T ~ 30 K. The solid lines represent fits to the relaxation function for dilute spin systems in zero field for the static case (often used for dilute alloy spin glasses), which exhibits a fast relaxation, plus a non-relaxing paramagnetic component. (b) The relaxation rate α of the signal that exhibits fast relaxation. (c) The volume fraction of the magnetically ordered region, derived from the amplitude of the fast relaxing signal. (d) μSR time spectra in the WTF of 30 Oe. The oscillation amplitude corresponds to the paramagnetic volume fraction. Adoped from Ref. [19].

Fig. 4.  (Color online) (a) M(H) and ρ(H) in Li1.04Zn0.9Mn0.1P show hysteresis, demonstrating ferromagnetism with small coercive field of about 50 Oe. (b) Magnetoresistivity ρH(T) of Li1.04Zn0.9Mn0.1P at different external fields. Inset shows negative magnetoresistance at low temperature. (c) Arrott plots at various temperatures above and below TC, shows the ferromagnetic transition temperature at 45 K. (d) Negative magnetoresistance at different temperatures. (e) The temperature dependence of M in H = 100 Oe for Li(Zn1–x–0.15CoxMn0.15)As (no difference in ZFC and FC procedures for small coercive fields). (f) Hall resistivity of Li(Zn0.8Co0.1Mn0.1)As at 2 K, which exhibits p-type carriers with concentrations of n ~7.74 × 1019 cm–3 together with the anomalous Hall effect due to spontaneous magnetization at H = 0. Adoped from Refs. [28, 33].

Fig. 5.  (Color online) Magnetization & transport measuremets of (Ba,K)(Zn,Mn)2As2. (a) The tempertature dependence of M in H = 500 Oe for (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 at ZFC and FC procedures with TC 230 K. Inset: The isothermal magnetic hysteresis curve M(H), measured in the external field H up to 7 T. (b) The spontaneous magnetization curve under 5 Oe of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, showing T 3/2 dependence in low temperature expected for a homogeneous ferromagnet. (c) Volume fraction of regions with static magnetic order, estimated by μSR measurements in ZF and weak transverse field (WTF) of 50 G. No hysteresis is seen for WTF measurements with ZF cooling and field cooling in 500 G. Inset: DC magnetization results of the specimens used in μSR measurements. (d) Resistivity of (Ba1–xKx)(Zn1–yMny)2As2 for with several different charge doping levels. (e) Magnetoresistance curve measured in the external field up to 7 T at several selected temperatures, with obvious negative magnetoresistance below TC. Inset: Resistivity curve of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2. (f) Hall effect results from a sintered specimen of (Ba0.85K0.15)(Zn0.90Mn0.10)2As2 at several selected temperatures. A large coercive field is seen at 2 K. Adoped from Refs. [20, 22].

Fig. 6.  (Color online) Magnetization & transport measurements of (Ca,Na)(Zn,Mn)2As2, (Sr,Na)(Zn,Mn)2As2 and (Sr,Na)(Cd,Mn)2As2. (a) The temperature dependence of M in H = 500 Oe for (Ca0.9Na0.1)(Zn,Mn)2As2 with several different charge doping levels x at ZFC and FC procedures with the highest TC 33 K. (b) The temperature dependence of the volume fraction of regions with static magnetic order, estimated by μSR measurements in ZF, consistent with that of spontaneous magnetization under 5 Oe, which shows T 3/2 dependence in low temperature expected for a homogeneous ferromagnet. (c) Curie temperature TC, Weiss temperature θ, effective paramagnetic moment Meff, and saturation moment Msat for (Sr0.9Na0.1)(Zn1–xMnx)2As2 with different spin doping. (d) The temperature dependence of the volume fraction of regions with static magnetic order, estimated by μSR measurements in ZF, consistent with that of spontaneous magnetization under 10 Oe. Inset is the relaxation reats versus temperature, which is consistent with TC. (e) The hysteresis curves of (Sr1–xNax)(Cd1–xMnx)2As2 samples with x = 0.05, 0.1, and 0.125, respectively, at 2 K. (f) Negative magnetoresistance of (Sr0.8Na0.2)(Cd0.8Mn0.2)2As2 at 2 K. Adoped from Refs. [4042].

Fig. 7.  (Color online) (a) Field dependences of magnetization for (La0.95Ca0.05)(Zn0.9Mn0.1)SbO measured at 25 and 100 K. (b) resistivity of (La0.95Ca0.05)(Zn0.925Mn0.075)SbO in various external field H, which exhibits negative magnetoresistance. (c) The temperature dependence of M in H = 500 Oe for (Ba0.8K0.2)F(Zn1–yMny)As with several different charge doping levels y at ZFC and FC procedures with the highest TC 30 K. Inset shows the temperature dependence of the inverse susceptibility for (Ba0.8K0.2)F(Zn0.925Mn0.075)As. (d) The temperature dependence of fast relaxation rate Λ. The error bars represent the estimated standard deviations of the refined parameters. (e) Correlation between TC and the hole concentration for several “111”, “122”, “1111” new types of diluted ferromagnetic semiconductors and typical III–V diluted ferromagnetic semiconductors. Adoped from Refs. [45, 47].

Fig. 8.  (Color online) (a) Mn L2,3-edge XAS spectra of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 polycrystal. The spectrum is compared with those of (Ga0.922Mn0.078)As, (Ga0.958Mn0.042N), Mn metal, Ba(Fe0.92Mn0.08)2As2, LaMnO3, and MnO.The valence and the local symmetry of the Mn atom are indicated for each compound. (b) & (c) ARPES energy-momentum intensity taken with on- and off-resonance energy photons. (d) & (e) Second derivatives of the on- and off-resonance ARPES spectra. Adoped from Refs. [60, 66].

Fig. 9.  (Color online) (a) The X-ray difraction patterns of (Ba0.904K0.096)(Zn0.805Mn0.195)2As2 at room temperature. The inset shows the crystal structure (right) and its photograph (lef). (b) The tempertature dependence of M in H = 500 Oe for at ZFC and FC procedures in c-axis and ab-plane. (c) The hysteresis curves M(H) measured at 2 K in different axis to exhibit magnetic anisotropy. (d) The temperature dependence of resistivity with current in ab-plane. Inset shows the MR(T) curves in various exterial field strengths. (e) & (f) The anomalous Hall efect Rxy and the magnetoresistance Rxx at several selected temperatures from 2 to 130 K. Adoped from Ref. [67].

Fig. 10.  (Color online) (a) Sketch of the (Ba0.904K0.096)(Zn0.805Mn0.195)2As2/Pb junctions used for Andreev refection spectroscopy. The inset is the normalization for the diferential conductance G/G0. (b) Normalized diferential conductance G/G0 spectra (red dot) and their fts to the modifed BTK theory (blue line) at selected temperatures at 1.7 K. Adoped from Ref. [67].

Fig. 11.  (colour online) Crystal structures and key physical propertity of (Ba,K)(Zn,Mn)2As2, BaMn2As2, BaZn2As2 and (Ba,K)Fe2As2.

Table 1.   Some selected properties in new diluted magnetic semiconductors with independent spin & charge doping, superconductors and antiferromagnets.

Diluted magnetic semiconductors
(Highest Curie temperature TC)
Superconductors (Superconducting
temperature TC’)
Antiferromagnets
(Neel’s temperature TN)
TypeStructureMaterialTC (K)MaterialTC’ (K)MaterialTN (K)
“111” Zinc blende type structure (F-43m)Li(Zn,Mn)As[19]50LiFeAs[26] (P4/nmm)18LiMnAs[82] (P4/nmm)378.3
34
Li(Cd,Mn)P[36]45
Li(Zn,Co,Mn)As[33]40
Li(Zn,Cu,Mn)As[34]33
“122”Tetragonal ThCr2Si2 type structure (P4/nmm)(Ba,K)(Zn,Mn)2As2[20, 22, 60, 64, 8488]230(Ba,K)Fe2As2[79] (P4/nmm)38BaMn2As2[78] (P4/nmm)625
(Ba,K)(Zn,Mn)2P2[89]Theory
Mn-doped BaZn2Sb2[90]
(Ba,K)(Zn,Mn)2(As,Pn)2 (Pn = P, Sb)[83]185
(Ba,Na)(Zn,Mn)2As2[77]20
Ba(Zn1-2xMnxCux)2As2[91]44
(Ba,K)(Cu,Mn)2Se2[92]18
Ba(Zn,Co)2As2[80]45
Hexagonal CaAl2Si2 type structure (P-3m1)(Ca,Na)(Zn,Mn)2As2[40]33
(Sr,Na)(Zn,Mn)2As2[42]24
(Sr,Na)(Cd,Mn)2As2[41]13
(Sr,K)(Zn,Mn)2As2[93, 94]12
(Ba,K)(Cd,Mn)2As2[95]16
“1111”ZrCuSiAs type structure (P4/nmm)(La,Ca)(Zn,Mn)SbO[45]40LaFeAs(O,F)[44] (P4/nmm)26LaMnAsO[96] (P4/nmm)317
(La,Ca)(Zn,Mn)AsO[45, 97]30
(La,Ba)(Zn,Mn)AsO[98, 99]40
La(Zn,Mn)AsO[100]Theory
(La,Sr)(Cu,Mn)SO[101]200
(La,Sr)(Zn,TM)AsO[101, 102]
(TM = Mn, Fe, Co)
30
(Ba,K)F(Zn,Mn)As[47]30
La(Zn,Mn,Cu)SbO[103]15
La(Zn,Mn,Cu)AsO[104]8
SrF(Zn,Mn,Cu)Sb[105]40
DownLoad: CSV
[1]
Hamaguchi C. Basic semiconductor physics. Springer, 2001
[2]
Mack C A. Fifty years of Moore's law. IEEE Trans Semicond Manufac, 2011, 24, 202 doi: 10.1109/TSM.2010.2096437
[3]
Žutić I, Fabian J, Das Sarma S. Spintronics fundamentals and applications. Rev Mod Phys, 2004, 76, 323 doi: 10.1103/RevModPhys.76.323
[4]
Žutić I, Zhou T. Tailoring magnetism in semiconductors. Sci Chin Phys, Mechan Astronom, 2018, 61, 067031 doi: 10.1007/s11433-018-9191-0
[5]
McGuire T R, Argyle B E, Shafer M W, et al. Magnetic properties of some divalent europium compounds. J Appl Phys, 1963, 34, 1345 doi: 10.1063/1.1729501
[6]
Berger S B, Pinch H L. Ferromagnetic resonance of single crystals of CdCr2S4 and CdCr2Se4. J Appl Phys, 1967, 38, 949 doi: 10.1063/1.1709697
[7]
Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64, R29 doi: 10.1063/1.341700
[8]
Story T, Galazka R R, Frankel R B, et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 1986, 56, 777 doi: 10.1103/PhysRevLett.56.777
[9]
Samarth N, Furdyna J K. Diluted magnetic semiconductors. Proc IEEE, 1990, 78, 990 doi: 10.1109/5.56911
[10]
Munekata H, Ohno H, von Molnar S,et al. Diluted magnetic III–V semiconductors. Phys Rev Lett, 1989, 63, 1849 doi: 10.1103/PhysRevLett.63.1849
[11]
Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[12]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[13]
Ohno H, Munekata H, Penney T, et al. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III–V semiconductors. Phys Rev Lett, 1992, 68, 2664 doi: 10.1103/PhysRevLett.68.2664
[14]
Wang M, Campion R P, Rushforth A W, et al. Achieving high Curie temperature in (Ga,Mn)As. Appl Phys Lett, 2008, 93, 132103 doi: 10.1063/1.2992200
[15]
Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 2009, 95, 182505 doi: 10.1063/1.3259821
[16]
Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[17]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1038/nmat2898
[18]
Bonanni A, Dietl T. A story of high-temperature ferromagnetism in semiconductors. Chem Soc Rev, 2010, 39, 528 doi: 10.1039/B905352M
[19]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[20]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[21]
Deng Z, Zhao K, Jin C. New types of diluted magnetic semiconductors with decoupled charge and spin doping. Physics, 2013, 42, 682
[22]
Zhao K, Chen B, Zhao G, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[23]
Bacewicz R, Ciszek T F. Preparation and characterization of some AIBIICV type semiconductors. Appl Phys Lett, 1988, 52, 1150 doi: 10.1063/1.99188
[24]
Kuriyama K, Nakamura F. Electrical transport properties and crystal structure of LiZnAs. Phys Rev B, 1987, 36, 4439 doi: 10.1103/PhysRevB.36.4439
[25]
Kuriyama K, Kato T, Kawada K. Optical band gap of the filled tetrahedral semiconductor LiZnAs. Phys Rev B, 1994, 49, 11452 doi: 10.1103/PhysRevB.49.11452
[26]
Wang X C, Liu Q Q, Lv Y X, et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 2008, 148, 538 doi: 10.1016/j.ssc.2008.09.057
[27]
Masek J, Kudrnovsky J, Maca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 2007, 98, 067202 doi: 10.1103/PhysRevLett.98.067202
[28]
Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203 doi: 10.1103/PhysRevB.88.081203
[29]
Uemura Y J, Yamazaki T, Harshman D R, et al. Muon-spin relaxation in AuFe and CuMn spin glasses. Phys Rev B, 1985, 31, 546 doi: 10.1103/PhysRevB.31.546
[30]
Dunsiger S R, Carlo J P, Goko T, et al. Spatially homogeneous ferromagnetism of (Ga,Mn)As. Nat Mater, 2010, 9, 299 doi: 10.1038/nmat2715
[31]
Uemura Y J, Goko T, Gat-Malureanu I M, et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1–xCax)RuO3. Nat Phys, 2006, 3, 29 doi: 10.1038/nphys488
[32]
Ning F L, Man H, Gong X, et al. Suppression of Tc by overdoped Li in the diluted ferromagnetic semiconductor Li1+ y(Zn1− xMn x)P: A μSR investigation. Phys Rev B, 2014, 90, 085123 doi: 10.1103/PhysRevB.90.085123
[33]
Chen B, Deng Z, Li W, et al. Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites. AIP Adv, 2016, 6, 115014 doi: 10.1063/1.4967778
[34]
Guo S L, Zhao Y, Man H Y, et al. μSR investigation of a new diluted magnetic semiconductor Li(Zn,Mn,Cu)As with Mn and Cu codoping at the same Zn sites. J Phys Condens Matter, 2016, 28, 366001 doi: 10.1088/0953-8984/28/36/366001
[35]
Sun F, Xu C, Yu S, et al. Synchrotron X-ray diffraction studies on the new generation ferromagnetic semiconductor Li(Zn,Mn)As under high pressure. Chin Phys Lett, 2017, 34, 067501 doi: 10.1088/0256-307X/34/6/067501
[36]
Han W, Chen B J, Gu B, et al. Li(Cd,Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping. Sci Rep, 2019, 9, 7490 doi: 10.1038/s41598-019-43754-x
[37]
Matsukura F, Sawicki M, Dietl T, et al. Magnetotransport properties of metallic (Ga,Mn)As films with compressive and tensile strain. Physica E, 2004, 21, 1032 doi: 10.1016/j.physe.2003.11.165
[38]
MacDonald A H, Schiffer P, Samarth N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater, 2005, 4, 195 doi: 10.1038/nmat1325
[39]
Sasaki T, Sonoda S, Yamamoto Y, et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J Appl Phys, 2002, 91, 7911 doi: 10.1063/1.1451879
[40]
Zhao K, Chen B J, Deng Z, et al. (Ca,Na)(Zn,Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 2014, 116, 163906 doi: 10.1063/1.4899190
[41]
Chen B, Deng Z, Li W, et al. (Sr1–xNax)(Cd1–xMnx)2As2: A new charge and spin doping decoupled diluted magnetic semiconductors with CaAl2Si2-type structure. J Appl Phys, 2016, 120, 083902 doi: 10.1063/1.4961565
[42]
Chen B J, Zhao K, Deng Z, et al. (Sr,Na)(Zn,Mn)2As2: A diluted ferromagnetic semiconductor with the hexagonal CaAl2Si2 type structure. Phys Rev B, 2014, 90, 155202 doi: 10.1103/PhysRevB.90.155202
[43]
Dietl T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 2008, 77, 031005 doi: 10.1143/JPSJ.77.031005
[44]
Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La(O1–xFx) FeAs (x = 0.05−0.12) with TC = 26 K. JACS, 2008, 130, 3296 doi: 10.1021/ja800073m
[45]
Han W, Zhao K, Wang X, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to " 1111” type iron pnictide superconductors. Sci Chin Phys, Mechan Astronom, 2013, 56, 2026 doi: 10.1007/s11433-013-5320-1
[46]
Chen B J, Deng Z, Wang X C, et al. Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors. Chin Phys B, 2016, 25, 077503 doi: 10.1088/1674-1056/25/7/077503
[47]
Chen B, Deng Z, Li W, et al. New fluoride-arsenide diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with independent spin and charge doping. Sci Rep, 2016, 6, 36578 doi: 10.1038/srep36578
[48]
Bate G, Wohlfarth E. Ferromagnetic Materials. Vol. 2. Amsterdam: North-Holland Publishing Co, 1980, 381
[49]
Jungwirth T, Wunderlich J, V Novák V, et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 2014, 86, 855 doi: 10.1103/RevModPhys.86.855
[50]
Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944 doi: 10.1038/35050040
[51]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[52]
Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63, 195205 doi: 10.1103/PhysRevB.63.195205
[53]
Jungwirth T, Sinova J, Masek J, et al. Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys, 2006, 78, 809 doi: 10.1103/RevModPhys.78.809
[54]
Sato K, Bergqvist L, Kudrnovský J, et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys, 2010, 82, 1633 doi: 10.1103/RevModPhys.82.1633
[55]
Dietl T, Sato K, Fukushima T, et al. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev Modern Phys, 2015, 87, 1311 doi: 10.1103/RevModPhys.87.1311
[56]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[57]
Keavney D J, Wu D, Freeland J W, et al. Element resolved spin configuration in ferromagnetic manganese-doped gallium arsenide. Phys Rev Lett, 2003, 91, 187203 doi: 10.1103/PhysRevLett.91.187203
[58]
Beschoten B, Crowell P, Malajovich I, et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in (Ga1− xMn x)As. Phys Rev Lett, 1999, 83, 3073 doi: 10.1103/PhysRevLett.83.3073
[59]
Glasbrenner J K, Žutić I, Mazin I I. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 2014, 90, 140403 doi: 10.1103/PhysRevB.90.140403
[60]
Suzuki H, Zhao K, Shibata G, et al. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductorBa1−xKx(Zn1−yMny)2As2. Phys Rev B, 2015, 91, 140401 doi: 10.1103/PhysRevB.91.140401
[61]
Takeda Y, Kobayashi M, Okane T, et al. Nature of magnetic coupling between Mn ions in As-grown Ga1–xMnxAs studied by X-ray magnetic circular dichroism. Phys Rev Lett, 2008, 100, 247202 doi: 10.1103/PhysRevLett.100.247202
[62]
Hwang J I, Kobayashi M, Song G S, et al. X-ray magnetic circular dichroism characterization of GaN∕Ga1−xMnxN digital ferromagnetic heterostructure. Appl Phys Lett, 2007, 91
[63]
Andrieu S, Foy E, Fischer H, et al. Effect of O contamination on magnetic properties of ultrathin Mn films grown on (001) Fe. Phys Rev B, 1998, 58, 8210 doi: 10.1103/PhysRevB.58.8210
[64]
Suzuki H, Yoshida T, Ideta S, et al. Absence of superconductivity in the hole-doped Fe pnictide Ba(Fe1−xMnx)2As2: Photoemission and x-ray absorption spectroscopy studies. Phys Rev B, 2013, 88, 100501 doi: 10.1103/PhysRevB.88.100501
[65]
Burnus T, Hu Z, Hsieh H H, et al. Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy. Phys Rev B, 2008, 77, 125124 doi: 10.1103/PhysRevB.77.125124
[66]
Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p−d hybridization in the diluted magnetic semiconductor Ba1−xKx(Zn1−yMny)2As2 studied by soft x-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92, 235120 doi: 10.1103/PhysRevB.92.235120
[67]
Zhao G Q, Lin C Q, Deng Z, et al. Single crystal growth and spin polarization measurements of diluted magnetic semiconductor (BaK)(ZnMn)2As2. Sci Rep, 2017, 7, 14473 doi: 10.1038/s41598-017-08394-z
[68]
Zhao G Q, Li Z, Sun F, et al. Effects of high pressure on the ferromagnetism and in-plane electrical transport of (Ba0.904K0.096)(Zn0.805Mn0.195)2As2 single crystal. J Phys Condens Matter, 2018, 30, 254001 doi: 10.1088/1361-648X/aac367
[69]
Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys, 2010, 82, 1539 doi: 10.1103/RevModPhys.82.1539
[70]
Braden J G, Parker J S, Xiong P, et al. Direct measurement of the spin polarization of the magnetic semiconductor (Ga,Mn)As. Phys Rev Lett, 2003, 91, 056602 doi: 10.1103/PhysRevLett.91.056602
[71]
Panguluri R P, Nadgorny B, Wojtowicz T, et al. Inelastic scattering and spin polarization in dilute magnetic semiconductor (Ga,Mn)Sb. Appl Phys Lett, 2007, 91, 252502 doi: 10.1063/1.2819608
[72]
Bowen M, Bibes M, Barthélémy A, et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett, 2003, 82, 233 doi: 10.1063/1.1534619
[73]
Coey J M D, Sanvito S. Magnetic semiconductors and half-metals. J Phys D, 2004, 37, 988 doi: 10.1088/0022-3727/37/7/005
[74]
Ren C, Trbovic J, KallaheR R L, et al. Measurement of the spin polarization of the magnetic semiconductorEuSwith zero-field and Zeeman-split Andreev reflection spectroscopy. Phys Rev B, 2007, 75, 205208 doi: 10.1103/PhysRevB.75.205208
[75]
Guan T, Lin C, Yang C, et al. Evidence for half-metallicity in n-type HgCr2Se4. Phys Rev Lett, 2015, 115, 087002 doi: 10.1103/PhysRevLett.115.087002
[76]
Blonder G E, Tinkham M, Klapwijk T M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys Rev B, 1982, 25, 4515 doi: 10.1103/PhysRevB.25.4515
[77]
Gu G, Zhao G, Lin C, et al. Asperomagnetic order in diluted magnetic semiconductor (Ba,Na)(Zn,Mn)2As2. Appl Phys Lett, 2018, 112, 032402 doi: 10.1063/1.5010988
[78]
Singh Y, Green M A, Huang Q, et al. Magnetic order inBaMn2As2 from neutron diffraction measurements. Phys Rev B, 2009, 80, 100403 doi: 10.1103/PhysRevB.80.100403
[79]
Rotter M, Tegel M, Johrendt D. Superconductivity at 38 K in the iron arsenide (Ba1–xKx)Fe2As2. Phys Rev Lett, 2008, 101, 107006 doi: 10.1103/PhysRevLett.101.107006
[80]
Guo S, Man H, Wang K, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/PhysRevB.99.155201
[81]
Hirohata A, Sukegawa H, Yanagihara H, et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans Magnet, 2015, 51, 0800511 doi: 10.1109/TMAG.2015.2457393
[82]
Beleanu A, Kiss J, Kreiner G, et al. Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs. Phys Rev B, 2013, 88, 184429 doi: 10.1103/PhysRevB.88.184429
[83]
Peng Y, Yu S, Zhao G Q, et al. Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2. Chin Phys B, 2019, 28, 057501 doi: 10.1088/1674-1056/28/5/057501
[84]
Frandsen B A, Gong Z, Terban M W, et al. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)2As2. Phys Rev B, 2016, 94, 094102 doi: 10.1103/PhysRevB.94.094102
[85]
Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1−xKx)(Zn1−yMny)2As2 with independent spin and charge doping. Phys Rev B, 2016, 93, 224403 doi: 10.1103/PhysRevB.93.224403
[86]
Sun F, Zhao G Q, Escanhoela C A, et al. Hole doping and pressure effects on the II–II–V-based diluted magnetic semiconductor (Ba1−xKx)(Zn1−yMny)2As2. Phys Rev B, 2017, 95, 094412 doi: 10.1103/PhysRevB.95.094412
[87]
Surmach M A, Chen B J, Deng, et al. Weak doping dependence of the antiferromagnetic coupling between nearest-neighbor Mn2+ spins in (Ba1–xKx)(Zn1–yMny)2As2. Phys Rev B, 2018, 97, 104418 doi: 10.1103/PhysRevB.97.104418
[88]
Wang R, Huang Z X, Zhao G Q, et al. Out-of-plane easy-axis in thin films of diluted magnetic semiconductor Ba1−xKx- (Zn1−yMny)2As2. AIP Adv, 2017, 7, 045017 doi: 10.1063/1.4982713
[89]
Yang H C, Liu K, Lu Z Y. Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1–xKx)(Zn1–y Mny)2P2. Chin Phys B, 2018, 27, 067103 doi: 10.1088/1674-1056/27/6/067103
[90]
Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202 doi: 10.1103/PhysRevB.94.155202
[91]
Man H, Guo S, Sui Y, et al. Ba(Zn(1–2x)MnxCux)2As2: A bulk form diluted ferromagnetic semiconductor with Mn and Cu codoping at Zn sites. Sci Rep, 2015, 5, 15507 doi: 10.1038/srep15507
[92]
Guo S, Man H, Gong X, et al. (Ba1–xKx)(Cu2–xMnx)Se2: A copper-based bulk form diluted magnetic semiconductor with orthorhombic BaCu2S2-type structure. J Magnet Magnet Mater, 2016, 400, 295 doi: 10.1016/j.jmmm.2015.07.005
[93]
Yang X, Chen Q, Li Y, et al. Sr0.9K0.1Zn1.8Mn0.2As2: A ferromagnetic semiconductor with colossal magnetoresistance. EPL, 2014, 107, 67007 doi: 10.1209/0295-5075/107/67007
[94]
Yang J T, Luo S J, Xiong Y C. Magnetic mechanism investigations on K and Mn co-doped diluted magnetic semiconductor (Sr,K)(Zn,Mn)2As2. J Magnet Magnet Mater, 2016, 407, 334 doi: 10.1016/j.jmmm.2016.02.012
[95]
Yang X, Li Y, Zhang P, et al. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J Appl Phys, 2013, 114, 223905 doi: 10.1063/1.4842875
[96]
Emery N, Wildman E J, Skakle J M S, et al. Variable temperature study of the crystal and magnetic structures of the giant magnetoresistant materialsLMnAsO (L = La, Nd). Phys Rev B, 2011, 83, 144429 doi: 10.1103/physrevb.83.144429
[97]
Ding C, Guo S, Zhao Y, et al. The synthesis and characterization of 1111 type diluted ferromagnetic semiconductor (La1–xCax)(Zn1–xMnx)AsO. J Phys Condens Matter, 2016, 28, 026003 doi: 10.1088/0953-8984/28/2/026003
[98]
Jin C, Wang X, Liu Q, et al. New quantum matters: Build up versus high pressure tuning. Sci Chin Phy, Mechan Astronom, 2013, 56, 2337 doi: 10.1007/s11433-013-5356-2
[99]
Ding C, Man H, Qin C, et al. (La1–xBax)(Zn1–xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/PhysRevB.88.041102
[100]
Li X, Wu X, Yang J. Control of spin in a La(Mn,Zn)AsO alloy by carrier doping. J Mater Chem C, 2013, 1, 7197 doi: 10.1039/c3tc31514b
[101]
Yang X, Li Y, Shen C, et al. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200 K. Appl Phys Lett, 2013, 103, 022410 doi: 10.1063/1.4813540
[102]
Lu J, Man H, Ding C, et al. The synthesis and characterization of 1111-type diluted magnetic semiconductors (La1–xSrx)(Zn1–xTMx)AsO (TM = Mn, Fe, Co). EPL, 2013, 103, 67011 doi: 10.1209/0295-5075/103/67011
[103]
Zhao Y, Wang K, Guo S, et al. La(Zn 1–2xMnxCux)SbO: A new diluted magnetic semiconductor isostructural to 1111-type iron pnictide superconductors. EPL, 2017, 120, 47005 doi: 10.1209/0295-5075/120/47005
[104]
Guo S, Zhao Y, Gong X, et al. La(Zn1−2xMnxCux)AsO: A 1111-type diluted magnetic semiconductor with manganese and copper codoping at Zn sites. EPL, 2016, 114, 57008 doi: 10.1209/0295-5075/114/57008
[105]
Fu L, Gu Y, Guo S, et al. Ferromagnetism in fluoride-antimonide SrF(Zn1–2xMnxCux)Sb with a quasi two dimensional structure. J Magnet Magnet Mater, 2019, 483, 95 doi: 10.1016/j.jmmm.2019.03.091
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3691 Times PDF downloads: 158 Times Cited by: 0 Times

    History

    Received: 18 July 2019 Revised: 02 August 2019 Online: Accepted Manuscript: 06 August 2019Uncorrected proof: 07 August 2019Published: 09 August 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guoqiang Zhao, Zheng Deng, Changqing Jin. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping[J]. Journal of Semiconductors, 2019, 40(8): 081505. doi: 10.1088/1674-4926/40/8/081505 G Q Zhao, Z Deng, C Q Jin, Advances in new generation diluted magnetic semiconductors with independent spin and charge doping[J]. J. Semicond., 2019, 40(8): 081505. doi: 10.1088/1674-4926/40/8/081505.Export: BibTex EndNote
      Citation:
      Guoqiang Zhao, Zheng Deng, Changqing Jin. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping[J]. Journal of Semiconductors, 2019, 40(8): 081505. doi: 10.1088/1674-4926/40/8/081505

      G Q Zhao, Z Deng, C Q Jin, Advances in new generation diluted magnetic semiconductors with independent spin and charge doping[J]. J. Semicond., 2019, 40(8): 081505. doi: 10.1088/1674-4926/40/8/081505.
      Export: BibTex EndNote

      Advances in new generation diluted magnetic semiconductors with independent spin and charge doping

      doi: 10.1088/1674-4926/40/8/081505
      More Information
      • Corresponding author: Email: Jin@iphy.ac.cn
      • Received Date: 2019-07-18
      • Revised Date: 2019-08-02
      • Published Date: 2019-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return