J. Semicond. > Volume 40 > Issue 9 > Article Number: 091001

Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure

Xin Cong 1, 2, , Miaoling Lin 1, 2, and Ping-Heng Tan 1, 2, 3, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Research on two-dimensional (2D) materials and related van der Waals heterostructures (vdWHs) is intense and remains one of the leading topics in condensed matter physics. Lattice vibrations or phonons of a vdWH provide rich information, such as lattice structure, phonon dispersion, electronic band structure and electron–phonon coupling. Here, we provide a mini review on the lattice vibrations in vdWHs probed by Raman spectroscopy. First, we introduced different kinds of vdWHs, including their structures, properties and potential applications. Second, we discussed interlayer and intralayer phonon in twist multilayer graphene and MoS2. The frequencies of interlayer and intralayer modes can be reproduced by linear chain model (LCM) and phonon folding induced by periodical moiré potentials, respectively. Then, we extended LCM to vdWHs formed by distinct 2D materials, such as MoS2/graphene and hBN/WS2 heterostructures. We further demonstrated how to calculate Raman intensity of interlayer modes in vdWHs by interlayer polarizability model.

Key words: two-dimensional materialsvan der Waals heterostructureRaman spectroscopylattice vibrationphonon

Abstract: Research on two-dimensional (2D) materials and related van der Waals heterostructures (vdWHs) is intense and remains one of the leading topics in condensed matter physics. Lattice vibrations or phonons of a vdWH provide rich information, such as lattice structure, phonon dispersion, electronic band structure and electron–phonon coupling. Here, we provide a mini review on the lattice vibrations in vdWHs probed by Raman spectroscopy. First, we introduced different kinds of vdWHs, including their structures, properties and potential applications. Second, we discussed interlayer and intralayer phonon in twist multilayer graphene and MoS2. The frequencies of interlayer and intralayer modes can be reproduced by linear chain model (LCM) and phonon folding induced by periodical moiré potentials, respectively. Then, we extended LCM to vdWHs formed by distinct 2D materials, such as MoS2/graphene and hBN/WS2 heterostructures. We further demonstrated how to calculate Raman intensity of interlayer modes in vdWHs by interlayer polarizability model.

Key words: two-dimensional materialsvan der Waals heterostructureRaman spectroscopylattice vibrationphonon



References:

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666

[2]

Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(10), 768

[3]

Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13(3), 246

[4]

Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197

[5]

Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105, 136805

[6]

Li X L, Han W P, Wu J B, et al. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv Funct Mater, 2017, 27(19), 1604468

[7]

Wu J B, Zhang X Z, Ijäs M, et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat Commun, 2014, 5, 5309

[8]

Wu J B, Hu Z X, Zhang X, et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano, 2015, 9(7), 7440

[9]

Wu J B, Lin M L, Cong X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev, 2018, 47(5), 1822

[10]

Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond twodimensional materials. Nature, 2019, 567(7748), 323

[11]

Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298), aac9439

[12]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459), 419

[13]

Lin M L, Tan Q H, Wu J B, et al. Moiré phonons in twisted bilayer MoS2. ACS Nano, 2018, 12(8), 8770

[14]

Yu H Y, Liu G B, Tang J J. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci Adv, 2017, 3(11), e1701696

[15]

Seyler K L, Rivera P, Yu H Y, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746), 66

[16]

Tran K, Moody G, Wu F C, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature, 2019, 567(7746), 71

[17]

Jin C H, Regan E C, Yan A M, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746), 76

[18]

Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001

[19]

Zhang X, Qiao X F, Shi W, et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev, 2015, 44(9), 2757

[20]

Tan P H. Raman Spectroscopy of two-dimensional materials. Singapore: Springer, 2019

[21]

Liang L B, Zhang J, Sumpter B G, et al. Low-frequency shear and layer-breathing modes in raman scattering of twodimensional materials. ACS Nano, 2017, 11(12), 11777

[22]

Tan P H, Han W P, Zhao W J, et al. The shear mode of multilayer graphene. Nat Mater, 2012, 11(4), 294

[23]

Zhang X, Han W P, Wu J B, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B, 2013, 87(11), 115413

[24]

Lin M L, Zhou Y, Wu J B, et al. Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nat Commun, 2019, 10(1), 2419

[25]

Song Q J, Tan Q H, Zhang X, et al. Physical origin of davydov splitting and resonant Raman spectroscopy of davydov components in multilayer MoTe2. Phys Rev B, 2016, 93(11), 115409

[26]

Tan Q H, Zhang X, Luo X D, et al. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J Semicond, 2017, 38(3), 031006

[27]

Wu J B, Wang H, Li X L, et al. Raman spectroscopic characterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition. Carbon, 2016, 110, 225

[28]

Lin M L, Chen T, Lu W, et al. Identifying the stacking order of multilayer graphene grown by chemical vapor deposition via Raman spectroscopy. J Raman Spectrosc, 2018, 49(1), 46

[29]

Li H, Wu J B, Ran F R, et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano, 2017, 11(11), 11714

[30]

Yang J H, Lee J U, Cheong H. Excitation energy dependence of Raman spectra of few-layer WS2. FlatChem, 2017, 3, 64

[31]

Liang L B, Puretzky A A, Sumpter B G, et al. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale, 2017, 9(40), 15340

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666

[2]

Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(10), 768

[3]

Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13(3), 246

[4]

Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197

[5]

Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105, 136805

[6]

Li X L, Han W P, Wu J B, et al. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv Funct Mater, 2017, 27(19), 1604468

[7]

Wu J B, Zhang X Z, Ijäs M, et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat Commun, 2014, 5, 5309

[8]

Wu J B, Hu Z X, Zhang X, et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano, 2015, 9(7), 7440

[9]

Wu J B, Lin M L, Cong X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev, 2018, 47(5), 1822

[10]

Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond twodimensional materials. Nature, 2019, 567(7748), 323

[11]

Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298), aac9439

[12]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459), 419

[13]

Lin M L, Tan Q H, Wu J B, et al. Moiré phonons in twisted bilayer MoS2. ACS Nano, 2018, 12(8), 8770

[14]

Yu H Y, Liu G B, Tang J J. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci Adv, 2017, 3(11), e1701696

[15]

Seyler K L, Rivera P, Yu H Y, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746), 66

[16]

Tran K, Moody G, Wu F C, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature, 2019, 567(7746), 71

[17]

Jin C H, Regan E C, Yan A M, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746), 76

[18]

Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001

[19]

Zhang X, Qiao X F, Shi W, et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev, 2015, 44(9), 2757

[20]

Tan P H. Raman Spectroscopy of two-dimensional materials. Singapore: Springer, 2019

[21]

Liang L B, Zhang J, Sumpter B G, et al. Low-frequency shear and layer-breathing modes in raman scattering of twodimensional materials. ACS Nano, 2017, 11(12), 11777

[22]

Tan P H, Han W P, Zhao W J, et al. The shear mode of multilayer graphene. Nat Mater, 2012, 11(4), 294

[23]

Zhang X, Han W P, Wu J B, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B, 2013, 87(11), 115413

[24]

Lin M L, Zhou Y, Wu J B, et al. Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nat Commun, 2019, 10(1), 2419

[25]

Song Q J, Tan Q H, Zhang X, et al. Physical origin of davydov splitting and resonant Raman spectroscopy of davydov components in multilayer MoTe2. Phys Rev B, 2016, 93(11), 115409

[26]

Tan Q H, Zhang X, Luo X D, et al. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J Semicond, 2017, 38(3), 031006

[27]

Wu J B, Wang H, Li X L, et al. Raman spectroscopic characterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition. Carbon, 2016, 110, 225

[28]

Lin M L, Chen T, Lu W, et al. Identifying the stacking order of multilayer graphene grown by chemical vapor deposition via Raman spectroscopy. J Raman Spectrosc, 2018, 49(1), 46

[29]

Li H, Wu J B, Ran F R, et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano, 2017, 11(11), 11714

[30]

Yang J H, Lee J U, Cheong H. Excitation energy dependence of Raman spectra of few-layer WS2. FlatChem, 2017, 3, 64

[31]

Liang L B, Puretzky A A, Sumpter B G, et al. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale, 2017, 9(40), 15340

[1]

Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005

[2]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[3]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[4]

Qing-Hai Tan, Xin Zhang, Xiang-Dong Luo, Jun Zhang, Ping-Heng Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J. Semicond., 2017, 38(3): 031006. doi: 10.1088/1674-4926/38/3/031006

[5]

Peng Zhang, Yiwei Zhang, Yi Wei, Huaning Jiang, Xingguo Wang, Yongji Gong. Contact engineering for two-dimensional semiconductors. J. Semicond., 2020, 41(7): 071901. doi: 10.1088/1674-4926/41/7/071901

[6]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[7]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[8]

Yuanyuan Jin, Huimin Li, Song Liu. Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition. J. Semicond., 2020, 41(7): 072901. doi: 10.1088/1674-4926/41/7/072901

[9]

Zheng Wenli, Li Tinghui. Compositional dependence of Raman frequencies in SixGe1-x alloys. J. Semicond., 2012, 33(11): 112001. doi: 10.1088/1674-4926/33/11/112001

[10]

Sandong Guo . First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure. J. Semicond., 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

[11]

Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509

[12]

Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, Ashok Jadhavar, Avinash Rokade, Adinath Funde, Kakasaheb Mohite, Manish Shinde, Habib Pathan, Rupesh Devan, Sandesh Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications. J. Semicond., 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

[13]

Wang Jianhui, Wang Xinhua, Pang Lei, Chen Xiaojuan, Jin Zhi, Liu Xinyu. Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs. J. Semicond., 2012, 33(9): 094004. doi: 10.1088/1674-4926/33/9/094004

[14]

Thierno Sall, A. Nafidi, Bernabé Marí Soucase, Miguel Mollar, Bouchaib Hartitti, Mounir Fahoume. Synthesis of In2S3 thin films by spray pyrolysis from precursors with different[S]/[In] ratios. J. Semicond., 2014, 35(6): 063002. doi: 10.1088/1674-4926/35/6/063002

[15]

Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005

[16]

Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Youwen Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004

[17]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[18]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[19]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[20]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

Search

Advanced Search >>

GET CITATION

X Cong, M L Lin, P H Tan, Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure[J]. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001.

Export: BibTex EndNote

Article Metrics

Article views: 1181 Times PDF downloads: 69 Times Cited by: 0 Times

History

Manuscript received: 06 August 2019 Manuscript revised: 16 August 2019 Online: Accepted Manuscript: 21 August 2019 Uncorrected proof: 26 August 2019 Published: 01 September 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误