J. Semicond. > Volume 41 > Issue 12 > Article Number: 122502

An antiferromagnetic two-dimensional material: Chromium diiodides monolayer

Jingjing Zhang 1, , Jin Yang 1, , Liangzhong Lin 2, and JiaJi Zhu 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: The two-dimensional (2D) ferromagnetic materials and the related van der Waals homostructures have attracted considerable interest, while the 2D antiferromagnetic material has not yet been reported. Based on first-principles calculations, we investigate both electronic structures and magnetic orderings of bulk and monolayer of chromium diiodides (CrI2). We demonstrate a counter-intuitive fact that the ground state of the free-standing monolayer of CrI2 is antiferromagnetic though the bulk possesses macroscopic ferromagnetic ordering. The interlayer interaction remains antiferromagnetic up to few-layer scenarios. The unique feature of CrI2 makes it an ideal workbench to investigate the relation between magnetic couplings and interlayer van der Waals interactions, and may offer an opportunity to 2D antiferromagnetic spintronic devices.

Key words: first-principles calculationchromium diiodidetwo-dimensional materialstwo-dimensional antiferromagnet

Abstract: The two-dimensional (2D) ferromagnetic materials and the related van der Waals homostructures have attracted considerable interest, while the 2D antiferromagnetic material has not yet been reported. Based on first-principles calculations, we investigate both electronic structures and magnetic orderings of bulk and monolayer of chromium diiodides (CrI2). We demonstrate a counter-intuitive fact that the ground state of the free-standing monolayer of CrI2 is antiferromagnetic though the bulk possesses macroscopic ferromagnetic ordering. The interlayer interaction remains antiferromagnetic up to few-layer scenarios. The unique feature of CrI2 makes it an ideal workbench to investigate the relation between magnetic couplings and interlayer van der Waals interactions, and may offer an opportunity to 2D antiferromagnetic spintronic devices.

Key words: first-principles calculationchromium diiodidetwo-dimensional materialstwo-dimensional antiferromagnet



References:

[1]

Tokmachev A M, Averyanov D V, Parfenov O E, et al. Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun, 2018, 9, 1672

[2]

Shi X Y, Huang Z J, Huttula M, et al. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: A brief review from first-principles aspects. Crystals, 2018, 8, 24

[3]

Tao P, Guo H H, Yang T, et al. Strain-induced magnetism in MoS2 monolayer with defects. J Appl Phys, 2014, 115, 054305

[4]

Kochat V, Apte A, Hachtel J A, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv Mater, 2017, 29, 1703754

[5]

Hallal A, Ibrahim F, Yang H X, et al. Tailoring magnetic insulator proximity effects in graphene: First-principles calculations. 2D Mater, 2017, 4, 025074

[6]

Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133

[7]

Miao N H, Xu B, Zhu L G, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417

[8]

Lin X, Yang W, Wang K L, et al. Two-dimensional spintronics for low-power electronics. Nat Electron, 2019, 2, 274

[9]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[10]

Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[11]

Sheng X L, Nikolić B K. Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions. Phys Rev B, 2017, 95, 201402

[12]

Kuo C T, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der waals crystals. Sci Rep, 2016, 6, 20904

[13]

Zhu W, Gan W, Muhammad Z, et al. Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem Commun, 2018, 54, 4481

[14]

Li X X, Yang J L. CrXTe3 (X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2014, 2, 7071

[15]

Zhuang H L, Kent P R C, Hennig R G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys Rev B, 2016, 93, 134407

[16]

Yadav C S, Rastogi A K. Transport and magnetic properties of FexVSe2 (x = 0–0.33). J Phys: Condens Matter, 2008, 20, 465219

[17]

Sun J J, Li C, Chen D, et al. Controlled synthesis of ferromagnetic MnSex particles. Chin Phys B, 2016, 25, 107405

[18]

Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002

[19]

Abramchuk M, Jaszewski S, Metz K R, et al. Controlling magnetic and optical properties of the van der waals crystal CrCl3− xBrx via mixed halide chemistry. Adv Mater, 2018, 30, 1801325

[20]

Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14, 408

[21]

Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PNAS, 2018, 115, 8511

[22]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, b864

[23]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, a1133

[24]

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49, 14251

[25]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15

[26]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169

[27]

Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953

[28]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758

[1]

Tokmachev A M, Averyanov D V, Parfenov O E, et al. Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun, 2018, 9, 1672

[2]

Shi X Y, Huang Z J, Huttula M, et al. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: A brief review from first-principles aspects. Crystals, 2018, 8, 24

[3]

Tao P, Guo H H, Yang T, et al. Strain-induced magnetism in MoS2 monolayer with defects. J Appl Phys, 2014, 115, 054305

[4]

Kochat V, Apte A, Hachtel J A, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv Mater, 2017, 29, 1703754

[5]

Hallal A, Ibrahim F, Yang H X, et al. Tailoring magnetic insulator proximity effects in graphene: First-principles calculations. 2D Mater, 2017, 4, 025074

[6]

Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133

[7]

Miao N H, Xu B, Zhu L G, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417

[8]

Lin X, Yang W, Wang K L, et al. Two-dimensional spintronics for low-power electronics. Nat Electron, 2019, 2, 274

[9]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[10]

Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[11]

Sheng X L, Nikolić B K. Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions. Phys Rev B, 2017, 95, 201402

[12]

Kuo C T, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der waals crystals. Sci Rep, 2016, 6, 20904

[13]

Zhu W, Gan W, Muhammad Z, et al. Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem Commun, 2018, 54, 4481

[14]

Li X X, Yang J L. CrXTe3 (X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2014, 2, 7071

[15]

Zhuang H L, Kent P R C, Hennig R G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys Rev B, 2016, 93, 134407

[16]

Yadav C S, Rastogi A K. Transport and magnetic properties of FexVSe2 (x = 0–0.33). J Phys: Condens Matter, 2008, 20, 465219

[17]

Sun J J, Li C, Chen D, et al. Controlled synthesis of ferromagnetic MnSex particles. Chin Phys B, 2016, 25, 107405

[18]

Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002

[19]

Abramchuk M, Jaszewski S, Metz K R, et al. Controlling magnetic and optical properties of the van der waals crystal CrCl3− xBrx via mixed halide chemistry. Adv Mater, 2018, 30, 1801325

[20]

Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14, 408

[21]

Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PNAS, 2018, 115, 8511

[22]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, b864

[23]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, a1133

[24]

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49, 14251

[25]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15

[26]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169

[27]

Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953

[28]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758

Search

Advanced Search >>

GET CITATION

J J Zhang, J Yang, L Z Lin, J J Zhu, An antiferromagnetic two-dimensional material: Chromium diiodides monolayer[J]. J. Semicond., 2020, 41(12): 122502. doi: 10.1088/1674-4926/41/12/122502.

Export: BibTex EndNote

Article Metrics

Article views: 2565 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 17 April 2020 Manuscript revised: 07 May 2020 Online: Accepted Manuscript: 03 August 2020 Uncorrected proof: 07 August 2020 Published: 08 December 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误