ARTICLES

1064 nm InGaAsP multi-junction laser power converters

Jiajing Yin1, 2, Yurun Sun1, Shuzhen Yu1, Yongming Zhao1, Rongwei Li1 and Jianrong Dong1,

+ Author Affiliations

 Corresponding author: Jianrong Dong, Email: jrdong2007@sinano.ac.cn

PDF

Turn off MathJax

Abstract: Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile, 1064 nm InGaAsP multi-junction laser power converters have been developed using p+-InGaAs/n+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition (MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature IV measurements show that the 1 × 1 cm2 triple-junction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.

Key words: InGaAsPmulti-junction laser power converterconversion efficiency



[1]
Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference, 1996, 101
[2]
Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laserillumination. Prog Photovolt: Res Appl, 2008, 16(4), 289 doi: 10.1002/pip.811
[3]
Andreev V, Khvostikov V, Kalinovsky V, et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming. IEEE World Conference on Photovoltaic Energy Conversion, 2003, 761
[4]
Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109, 131107 doi: 10.1063/1.4964120
[5]
Khvostikov V, Sorokina S, Potapovich N, et al. AlGaAs converters and arrays for laser power beaming. AIP Conference Proceedings, 2015, 1679(1), 130002
[6]
Valdivia C E, Wilkins M M, Bouzazi B, et al. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Physics, Simulation, Photonic Eng Photovolt Devices IV, 2015, 9358, 93580E
[7]
Safard S, York M C A, Proulx F, et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 2016, 108(7), 071101 doi: 10.1063/1.4941240
[8]
Green M A, Zhao J, Wang A, et al. 45 % efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett, 1992, 13(6), 317 doi: 10.1109/55.145070
[9]
Khvostikov V P, Sorokina S V, Potapovich N S, et al. GaInAsP/InP-based laser power converters (λ = 1064 nm). Semiconductors, 2018, 52(13), 1748 doi: 10.1134/S1063782618130079
[10]
Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9), 1154 doi: 10.1109/LED.2016.2591015
[11]
Mintairov S A, Emelyanov V M, Rybalchenko D V, et al. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates. Semiconductors, 2016, 50(4), 517 doi: 10.1134/S1063782616040163
[12]
Rybalchenko D V, Mintairov S A, Salii R A, et al. Metamorphic InGaAs photo-converters on GaAs substrates. J Phys: Conf Ser, 2016, 690(1), 012032 doi: 10.1088/1742-6596/690/1/012032
[13]
Rybalchenko D V, Mintairov S A, Salii R A, et al. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. Semiconductors, 2017, 51(1), 93 doi: 10.1134/S1063782617010201
[14]
Kaluzhnyy N A, Mintaiov S A, Nadtochiy A M, et al. InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency. Electron Lett, 2017, 53(3), 173 doi: 10.1049/el.2016.4308
[15]
Kim Y, Shin H B, Lee W H, et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol Energy Mater Sol Cells, 2019, 200, 109984 doi: 10.1016/j.solmat.2019.109984
[16]
Peña R, Algora C. One-watt fiber-based power-by-light system for satellite applications. Prog Photovolt: Res Appl, 2012, 20(1), 117 doi: 10.1002/pip.1130
[17]
Pena R, Algora C. The influence of monolithic series connection on the efficiency of GaAs photovoltaic converters for monochromatic illumination. IEEE Trans Electron Devices, 2001, 48(2), 196 doi: 10.1109/16.902716
[18]
Guan C G, Liu W, Gao Q. Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance. Mater Sci Semicond Process, 2018, 75, 136 doi: 10.1016/j.mssp.2017.11.027
[19]
Schubert J, Oliva E, Dimroth F. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56(2), 170 doi: 10.1109/TED.2008.2010603
[20]
Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolts: Res Appl, 2015, 239(12), 1687 doi: 10.1002/pip.2709
[21]
York M C A, Proulx F, Masson D P, et al. Thin n/p GaAs junctions for novel high-efficiency phototransducers based on a vertical epitaxial heterostructure architecture. MRS Adv, 2016, 1(14), 881 doi: 10.1557/adv.2016.9
[22]
Fafard S, Proulx F, York M C A, et al. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent. Physics Simulation Photonic Eng Photovolt Devices V, 2016, 9743, 974304 doi: 10.1117/12.2218486
[23]
Proulx F, York M C A, Provost P O, et al. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architectures with conversion efficiencies exceeding 60%. Phys Status Solidi-Rapid Res Lett, 2017, 11(2), 1600385 doi: 10.1002/pssr.201600385
[24]
Burkhard H, Dinges H W, Kuphal E. Optical properties of In1– xGaxP1– yAsy, InP, GaAs, and GaP determined by ellipsometry. J Appl Phys, 1982, 53(1), 655 doi: 10.1063/1.329973
Fig. 1.  Schematic layer structure of the designed triple-junction InGaAsP LPC.

Fig. 2.  Calculated I–V and P–V characteristics of the designed triple-junction InGaAsP LPC.

Fig. 3.  Surface reflectance spectrum of the triple-junction InGaAsP LPCs with an antireflection coating.

Fig. 4.  I–V curves of a triple-junction InGaAsP LPC at different input 1064 nm laser power densities.

Fig. 5.  External quantum efficiency of the triple-junction InGaAsP LPC.

Table 1.   Parameters for efficiency estimation of triple-junction InGaAsP laser power converter.

ParameterValue
Internal quantum efficiency95%
Surface reflectivity3%
Grid shadowing3%
Percentage of incident light be absorbed98.5%
Optical power intensity (W/cm2)1
Ideal factor for InGaAsP pn junction1
Band gap of InGaAsP (eV)1.08
Shunt resistance (Ω)600
Series resistance (Ω)0.2
DownLoad: CSV

Table 2.   Summary of the parameters of triple-junction InGaAsP LPC at laser power densities of 610, 989, 1100, and 1233 mW/cm2.

Power density (mW/cm2)Voc (V)Jsc (mA/cm2)Fill factorEfficiency (%)
6102.12124.860.726531.46
9892.14202.430.733832.13
11002.16225.150.738432.60
12332.16252.380.725232.03
DownLoad: CSV
[1]
Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference, 1996, 101
[2]
Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laserillumination. Prog Photovolt: Res Appl, 2008, 16(4), 289 doi: 10.1002/pip.811
[3]
Andreev V, Khvostikov V, Kalinovsky V, et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming. IEEE World Conference on Photovoltaic Energy Conversion, 2003, 761
[4]
Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109, 131107 doi: 10.1063/1.4964120
[5]
Khvostikov V, Sorokina S, Potapovich N, et al. AlGaAs converters and arrays for laser power beaming. AIP Conference Proceedings, 2015, 1679(1), 130002
[6]
Valdivia C E, Wilkins M M, Bouzazi B, et al. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Physics, Simulation, Photonic Eng Photovolt Devices IV, 2015, 9358, 93580E
[7]
Safard S, York M C A, Proulx F, et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 2016, 108(7), 071101 doi: 10.1063/1.4941240
[8]
Green M A, Zhao J, Wang A, et al. 45 % efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett, 1992, 13(6), 317 doi: 10.1109/55.145070
[9]
Khvostikov V P, Sorokina S V, Potapovich N S, et al. GaInAsP/InP-based laser power converters (λ = 1064 nm). Semiconductors, 2018, 52(13), 1748 doi: 10.1134/S1063782618130079
[10]
Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9), 1154 doi: 10.1109/LED.2016.2591015
[11]
Mintairov S A, Emelyanov V M, Rybalchenko D V, et al. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates. Semiconductors, 2016, 50(4), 517 doi: 10.1134/S1063782616040163
[12]
Rybalchenko D V, Mintairov S A, Salii R A, et al. Metamorphic InGaAs photo-converters on GaAs substrates. J Phys: Conf Ser, 2016, 690(1), 012032 doi: 10.1088/1742-6596/690/1/012032
[13]
Rybalchenko D V, Mintairov S A, Salii R A, et al. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. Semiconductors, 2017, 51(1), 93 doi: 10.1134/S1063782617010201
[14]
Kaluzhnyy N A, Mintaiov S A, Nadtochiy A M, et al. InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency. Electron Lett, 2017, 53(3), 173 doi: 10.1049/el.2016.4308
[15]
Kim Y, Shin H B, Lee W H, et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol Energy Mater Sol Cells, 2019, 200, 109984 doi: 10.1016/j.solmat.2019.109984
[16]
Peña R, Algora C. One-watt fiber-based power-by-light system for satellite applications. Prog Photovolt: Res Appl, 2012, 20(1), 117 doi: 10.1002/pip.1130
[17]
Pena R, Algora C. The influence of monolithic series connection on the efficiency of GaAs photovoltaic converters for monochromatic illumination. IEEE Trans Electron Devices, 2001, 48(2), 196 doi: 10.1109/16.902716
[18]
Guan C G, Liu W, Gao Q. Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance. Mater Sci Semicond Process, 2018, 75, 136 doi: 10.1016/j.mssp.2017.11.027
[19]
Schubert J, Oliva E, Dimroth F. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56(2), 170 doi: 10.1109/TED.2008.2010603
[20]
Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolts: Res Appl, 2015, 239(12), 1687 doi: 10.1002/pip.2709
[21]
York M C A, Proulx F, Masson D P, et al. Thin n/p GaAs junctions for novel high-efficiency phototransducers based on a vertical epitaxial heterostructure architecture. MRS Adv, 2016, 1(14), 881 doi: 10.1557/adv.2016.9
[22]
Fafard S, Proulx F, York M C A, et al. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent. Physics Simulation Photonic Eng Photovolt Devices V, 2016, 9743, 974304 doi: 10.1117/12.2218486
[23]
Proulx F, York M C A, Provost P O, et al. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architectures with conversion efficiencies exceeding 60%. Phys Status Solidi-Rapid Res Lett, 2017, 11(2), 1600385 doi: 10.1002/pssr.201600385
[24]
Burkhard H, Dinges H W, Kuphal E. Optical properties of In1– xGaxP1– yAsy, InP, GaAs, and GaP determined by ellipsometry. J Appl Phys, 1982, 53(1), 655 doi: 10.1063/1.329973
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3261 Times PDF downloads: 66 Times Cited by: 0 Times

    History

    Received: 17 October 2019 Revised: 26 November 2019 Online: Accepted Manuscript: 13 February 2020Uncorrected proof: 18 February 2020Published: 01 June 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiajing Yin, Yurun Sun, Shuzhen Yu, Yongming Zhao, Rongwei Li, Jianrong Dong. 1064 nm InGaAsP multi-junction laser power converters[J]. Journal of Semiconductors, 2020, 41(6): 062303. doi: 10.1088/1674-4926/41/6/062303 J J Yin, Y R Sun, S Z Yu, Y M Zhao, R W Li, J R Dong, 1064 nm InGaAsP multi-junction laser power converters[J]. J. Semicond., 2020, 41(6): 062303. doi: 10.1088/1674-4926/41/6/062303.Export: BibTex EndNote
      Citation:
      Jiajing Yin, Yurun Sun, Shuzhen Yu, Yongming Zhao, Rongwei Li, Jianrong Dong. 1064 nm InGaAsP multi-junction laser power converters[J]. Journal of Semiconductors, 2020, 41(6): 062303. doi: 10.1088/1674-4926/41/6/062303

      J J Yin, Y R Sun, S Z Yu, Y M Zhao, R W Li, J R Dong, 1064 nm InGaAsP multi-junction laser power converters[J]. J. Semicond., 2020, 41(6): 062303. doi: 10.1088/1674-4926/41/6/062303.
      Export: BibTex EndNote

      1064 nm InGaAsP multi-junction laser power converters

      doi: 10.1088/1674-4926/41/6/062303
      More Information
      • Corresponding author: Email: jrdong2007@sinano.ac.cn
      • Received Date: 2019-10-17
      • Revised Date: 2019-11-26
      • Published Date: 2020-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return