REVIEWS

A recent advances of blue perovskite light emitting diodes for next generation displays

Yung Jin Yoon and Jin Young Kim

+ Author Affiliations

 Corresponding author: Jin Young Kim, jykim@unist.ac.kr

PDF

Turn off MathJax

Abstract: The halide perovskite blue light emitting diodes (PeLEDs) attracted many researchers because of its fascinating optoelectrical properties. This review introduces the recent progress of blue PeLEDs which focuses on emissive layers and interlayers. The emissive layer covers three types of perovskite structures: perovskite nanocrystals (PeNCs), 2-dimensional (2D) and quasi-2D perovskites, and bulk (3D) perovskites. We will discuss about the remaining challenges of blue PeLEDs, such as limited performances, device instability issues, which should be solved for blue PeLEDs to realize next generation displays.

Key words: halide perovskitelight emitting diodesblue emission



[1]
Herz L M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett, 2017, 2, 1539 doi: 10.1021/acsenergylett.7b00276
[2]
Quan L N, Rand B P, Friend R H, et al. Perovskites for next-generation optical sources. Chem Rev, 2019, 119, 7444 doi: 10.1021/acs.chemrev.9b00107
[3]
De Wolf S, Holovsky J, Moon S J, et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett, 2014, 5, 1035 doi: 10.1021/jz500279b
[4]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7, 982 doi: 10.1039/c3ee43822h
[5]
Schmidt L C, Pertegás A, González-Carrero S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc, 2014, 136, 850 doi: 10.1021/ja4109209
[6]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[7]
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. J Phys Chem Lett, 2017, 8, 489 doi: 10.1021/acs.jpclett.6b02800
[8]
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5
[9]
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615 doi: 10.1126/science.abb7167
[10]
Sutherland B R, Johnston A K, Ip A H, et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics, 2015, 2, 1117 doi: 10.1021/acsphotonics.5b00164
[11]
Van Le Q, Jang H W, Kim S Y. Recent advances toward high-efficiency halide perovskite light-emitting diodes: Review and perspective. Small Methods, 2018, 2, 1700419 doi: 10.1002/smtd.201700419
[12]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[13]
Lin K B, Xing J, Quan L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[14]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[15]
Shi X B, Liu Y, Yuan Z C, et al. Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv Opt Mater, 2018, 6, 1800667 doi: 10.1002/adom.201800667
[16]
Carey G H, Abdelhady A L, Ning Z J, et al. Colloidal quantum dot solar cells. Chem Rev, 2015, 115, 12732 doi: 10.1021/acs.chemrev.5b00063
[17]
Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358, 745 doi: 10.1126/science.aam7093
[18]
Dong Y T, Wang Y K, Yuan F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol, 2020, 15, 668 doi: 10.1038/s41565-020-0714-5
[19]
Dong Y, Qiao T, Kim D, et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett, 2018, 18, 3716 doi: 10.1021/acs.nanolett.8b00861
[20]
Zhang F, Zhong H, Chen C, et al. Brightly-luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano, 2015, 9, 4533 doi: 10.1021/acsnano.5b01154
[21]
Shu B, Chang Y, Xu E, et al. Highly efficient and blue-emitting CsPbBr3 quantum dots synthesized by two-step supersaturated recrystallization. Nanotechnology, 2021, 32, 145712 doi: 10.1088/1361-6528/abcc21
[22]
Yoon Y J, Lee K T, Lee T K, et al. Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule, 2018, 2, 2105 doi: 10.1016/j.joule.2018.07.012
[23]
Nedelcu G, Protesescu L, Yakunin S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2015, 15, 5635 doi: 10.1021/acs.nanolett.5b02404
[24]
Parobek D, Dong Y, Qiao T, et al. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J Am Chem Soc, 2017, 139, 4358 doi: 10.1021/jacs.7b01480
[25]
Song J Z, Li J H, Li X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162 doi: 10.1002/adma.201502567
[26]
De Roo J, Ibáñez M, Geiregat P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016, 10, 2071 doi: 10.1021/acsnano.5b06295
[27]
Bodnarchuk M I, Boehme S C, ten Brinck S, et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett, 2019, 4, 63 doi: 10.1021/acsenergylett.8b01669
[28]
Pan J, Quan L, Zhao Y B, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718 doi: 10.1002/adma.201600784
[29]
Shin Y S, Yoon Y J, Lee K T, et al. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 23401 doi: 10.1021/acsami.9b04329
[30]
Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 21655 doi: 10.1021/acsami.9b02472
[31]
Li J H, Xu L M, Wang T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 2017, 29, 1603885 doi: 10.1002/adma.201603885
[32]
Wu T, Li J N, Zou Y T, et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew Chem, 2020, 132, 4128 doi: 10.1002/ange.201914000
[33]
Shin Y S, Yoon Y J, Lee K T, et al. High-performance perovskite light-emitting diodes with surface passivation of CsPbBrxI3– x nanocrystals via antisolvent-triggered ion-exchange. ACS Appl Mater Interfaces, 2020, 12, 31582 doi: 10.1021/acsami.0c06213
[34]
Ye F H, Zhang H J, Wang P, et al. Spectral tuning of efficient CsPbBrxCl3– x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates. Chem Mater, 2020, 32, 3211 doi: 10.1021/acs.chemmater.0c00312
[35]
Zheng X, Yuan S, Liu J, et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett, 2020, 5, 793 doi: 10.1021/acsenergylett.0c00057
[36]
Liu X K, Gao F. Organic–inorganic hybrid ruddlesden–popper perovskites: An emerging paradigm for high-performance light-emitting diodes. J Phys Chem Lett, 2018, 9, 2251 doi: 10.1021/acs.jpclett.8b00755
[37]
Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10, 6897 doi: 10.1021/acsnano.6b02683
[38]
Cheng L, Cao Y, Ge R, et al. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. Chin Chem Lett, 2017, 28, 29 doi: 10.1016/j.cclet.2016.07.001
[39]
Ni L, Huynh U, Cheminal A, et al. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano, 2017, 11, 10834 doi: 10.1021/acsnano.7b03984
[40]
Zhang F, Lu H P, Tong J H, et al. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ Sci, 2020, 13, 1154 doi: 10.1039/C9EE03757H
[41]
Wang N N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10, 699 doi: 10.1038/nphoton.2016.185
[42]
Yang X L, Zhang X W, Deng J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9, 570 doi: 10.1038/s41467-018-02978-7
[43]
Zhang L, Sun C J, He T W, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light: Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[44]
Jiang Y Z, Qin C C, Cui M H, et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 2019, 10, 1868 doi: 10.1038/s41467-019-09794-7
[45]
Li Z C, Chen Z M, Yang Y C, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun, 2019, 10, 1027 doi: 10.1038/s41467-019-09011-5
[46]
Kumar S, Jagielski J, Yakunin S, et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 2016, 10, 9720 doi: 10.1021/acsnano.6b05775
[47]
Congreve D N, Weidman M C, Seitz M, et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics, 2017, 4, 476 doi: 10.1021/acsphotonics.6b00963
[48]
Chen Z M, Zhang C Y, Jiang X F, et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv Mater, 2017, 29, 1603157 doi: 10.1002/adma.201603157
[49]
Wang Q, Ren J, Peng X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 2017, 9, 29901 doi: 10.1021/acsami.7b07458
[50]
Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 2019, 31, 83 doi: 10.1021/acs.chemmater.8b02999
[51]
Zhang F J, Cai B, Song J Z, et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv Funct Mater, 2020, 30, 2001732 doi: 10.1002/adfm.202001732
[52]
Chu Z M, Zhao Y, Ma F, et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat Commun, 2020, 11, 4165 doi: 10.1038/s41467-020-17943-6
[53]
Wang C H, Han D B, Wang J H, et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat Commun, 2020, 11, 6428 doi: 10.1038/s41467-020-20163-7
[54]
Kim Y C, An H J, Kim D H, et al. High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents. Adv Funct Mater, 2021, 31, 2005553 doi: 10.1002/adfm.202005553
[55]
Wang Q, Wang X M, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10, 5633 doi: 10.1038/s41467-019-13580-w
[56]
Xing J, Zhao Y B, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8
[57]
Zhang F, Zhang X, Wang C H, et al. Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy, 2021, 79, 105486 doi: 10.1016/j.nanoen.2020.105486
[58]
Kumawat N K, Dey A, Kumar A, et al. Band gap tuning of CH3NH3Pb(Br1– xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 2015, 7, 13119 doi: 10.1021/acsami.5b02159
[59]
Kumawat N K, Jain N, Dey A, et al. Quantitative correlation of perovskite film morphology to light emitting diodes efficiency parameters. Adv Funct Mater, 2017, 27, 1603219 doi: 10.1002/adfm.201603219
[60]
Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15, 6095 doi: 10.1021/acs.nanolett.5b02369
[61]
Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5, 1600920 doi: 10.1002/adom.201600920
[62]
Yuan F, Ran C X, Zhang L, et al. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Lett, 2020, 5, 1062 doi: 10.1021/acsenergylett.9b02562
[63]
Karlsson M, Yi Z Y, Reichert S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun, 2021, 12, 361 doi: 10.1038/s41467-020-20582-6
[64]
Wang H L, Zhao X F, Zhang B H, et al. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J Mater Chem C, 2019, 7, 5596 doi: 10.1039/C9TC01205B
[65]
Yoon Y J, Shin Y S, Jang H, et al. Highly stable bulk perovskite for blue LEDs with anion-exchange method. Nano Lett, 2021, 21, 3473 doi: 10.1021/acs.nanolett.1c00124
[66]
Cheng L, Yi C, Tong Y F, et al. Halide homogenization for high-performance blue perovskite electroluminescence. Research, 2020, 2020, 1 doi: https://doi.org/10.34133/2020/9017871
[67]
Jang C H, Harit A K, Lee S, et al. Sky-blue-emissive perovskite light-emitting diodes: Crystal growth and interfacial control using conjugated polyelectrolytes as a hole-transporting layer. ACS Nano, 2020, 14, 13246 doi: 10.1021/acsnano.0c04968
[68]
Zhang C Y, Wan Q, Wang B, et al. Surface ligand engineering toward brightly luminescent and stable cesium lead halide perovskite nanoplatelets for efficient blue-light-emitting diodes. J Phys Chem C, 2019, 123, 26161 doi: 10.1021/acs.jpcc.9b09034
[69]
Jin Y, Wang Z K, Yuan S, et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv Funct Mater, 2020, 30, 1908339 doi: 10.1002/adfm.201908339
[70]
Bi C H, Yao Z W, Sun X J, et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv Mater, 2021, 33, 2006722 doi: 10.1002/adma.202006722
[71]
Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 2019, 31, 1904319 doi: 10.1002/adma.201904319
[72]
Gangishetty M K, Hou S C, Quan Q M, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 2018, 30, 1706226 doi: 10.1002/adma.201706226
[73]
Shin Y S, Yoon Y J, Heo J, et al. Functionalized PFN-X (X = Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12, 35740 doi: 10.1021/acsami.0c09968
[74]
Wang K H, Peng Y D, Ge J, et al. Efficient and color-tunable quasi-2D CsPbBrxCl3– x perovskite blue light-emitting diodes. ACS Photonics, 2019, 6, 667 doi: 10.1021/acsphotonics.8b01490
[75]
Ren Z W, Xiao X T, Ma R M, et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 2019, 29, 1905339 doi: 10.1002/adfm.201905339
[76]
Bhansali U S, Jia H P, Lopez M A Q, et al. Controlling the carrier recombination zone for improved color stability in a two-dopant fluorophore/phosphor white organic light-emitting diode. Appl Phys Lett, 2009, 94, 203501 doi: 10.1063/1.3089867
[77]
Yang J L, Siempelkamp B D, Mosconi E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater, 2015, 27, 4229 doi: 10.1021/acs.chemmater.5b01598
[78]
Zhang L Q, Yang X L, Jiang Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun, 2017, 8, 15640 doi: 10.1038/ncomms15640
[79]
Sutter-Fella C M, Miller D W, Ngo Q P, et al. Band tailing and deep defect states in CH3NH3Pb(I1– xBrx)3 perovskites as revealed by sub-bandgap photocurrent. ACS Energy Lett, 2017, 2, 709 doi: 10.1021/acsenergylett.6b00727
[80]
Chiba T, Ishikawa S, Sato J, et al. Blue perovskite nanocrystal light-emitting devices via the ligand exchange with adamantane diamine. Adv Opt Mater, 2020, 8, 2000289 doi: 10.1002/adom.202000289
[81]
Shwetharani R, Vishaka H V, Kusuma J, et al. Green to blue light emitting CsPbBr3 perovskite by ligand exchange and its encapsulation by TiO2 for tandem effect in photovoltaic applications. ACS Appl Nano Mater, 2020, 3, 6089 doi: 10.1021/acsanm.0c01293
[82]
Suh Y H, Kim T, Choi J W, et al. High-performance CsPbX3 perovskite quantum-dot light-emitting devices via solid-state ligand exchange. ACS Appl Nano Mater, 2018, 1, 488 doi: 10.1021/acsanm.7b00212
[83]
Kumawat N K, Yuan Z C, Bai S, et al. Metal doping/alloying of cesium lead halide perovskite nanocrystals and their applications in light-emitting diodes with enhanced efficiency and stability. Isr J Chem, 2019, 59, 695 doi: 10.1002/ijch.201900031
[84]
Hou S C, Gangishetty M K, Quan Q M, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421 doi: 10.1016/j.joule.2018.08.005
[85]
Li F, Liu Y, Wang H L, et al. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem Mater, 2018, 30, 8546 doi: 10.1021/acs.chemmater.8b03442
[86]
van der Stam W, Geuchies J J, Altantzis T, et al. Highly emissive divalent-ion-doped colloidal CsPb1– xMxBr3 perovskite nanocrystals through cation exchange. J Am Chem Soc, 2017, 139, 4087 doi: 10.1021/jacs.6b13079
[87]
Chiba T, Sato J, Ishikawa S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices. ACS Appl Mater Interfaces, 2020, 12, 53891 doi: 10.1021/acsami.0c11736
[88]
Lee S, Kim D B, Hamilton I, et al. Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv Sci, 2018, 5, 1801350 doi: 10.1002/advs.201801350
[89]
Gong X W, Voznyy O, Jain A, et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat Mater, 2018, 17, 550 doi: 10.1038/s41563-018-0081-x
[90]
Peng S M, Wei Q, Wang B Z, et al. Suppressing strong exciton-phonon coupling in blue perovskite nanoplatelet solids by binary systems. Angew Chem Int Ed, 2020, 59, 22156 doi: 10.1002/anie.202009193
[91]
Jeong B, Han H, Choi Y J, et al. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv Funct Mater, 2018, 28, 1706401 doi: 10.1002/adfm.201706401
[92]
Ban M Y, Zou Y T, Rivett J P H, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 2018, 9, 3892 doi: 10.1038/s41467-018-06425-5
[93]
Zhang C X, Shen T, Guo D, et al. Reviewing and understanding the stability mechanism of halide perovskite solar cells. InfoMat, 2020, 2, 1034 doi: 10.1002/inf2.12104
[94]
Naikaew A, Kumnorkaew P, Supasai T, et al. Enhancing high humidity stability of quasi-2D perovskite thin films through mixed cation doping and solvent engineering. ChemNanoMat, 2019, 5, 1280 doi: 10.1002/cnma.201900189
[95]
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater, 2019, 29, 1808843 doi: 10.1002/adfm.201808843
[96]
Kim H S, Park N G. Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Mater, 2020, 12, 78 doi: 10.1038/s41427-020-00265-w
[97]
Jang Y W, Lee S, Yeom K M, et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat Energy, 2021, 6, 63 doi: 10.1038/s41560-020-00749-7
[98]
Knight A J, Borchert J, Oliver R D J, et al. Halide segregation in mixed-halide perovskites: Influence of A-site cations. ACS Energy Lett, 2021, 6, 799 doi: 10.1021/acsenergylett.0c02475
[99]
Xu F, Zhang T Y, Li G, et al. Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J Mater Chem A, 2017, 5, 11450 doi: 10.1039/C7TA00042A
[100]
Shen Y, Shen K C, Li Y Q, et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes. Adv Funct Mater, 2021, 31, 2006736 doi: 10.1002/adfm.202006736
[101]
Wang H, Xu Y, Wu J, et al. Bright and color-stable blue-light-emitting diodes based on three-dimensional perovskite polycrystalline films via morphology and interface engineering. J Phys Chem Lett, 2020, 11, 1411 doi: 10.1021/acs.jpclett.9b03714
Fig. 1.  (Color online) Synthesis and engineering methods of PeNCs to improve the performance of the blue PeLEDs. Schematic diagrams of synthesis method of the blue emissive PeNCs through (a) hot injection method, (b) LARP method[20], and (c) halide exchange method[23]. Copyright © 2015, American Chemical Society. Schematic diagrams of strategy to improve the blue PeLEDs through (d) ligand exchange method[28], (e) halide defect passivation method[35], and (f) bipolar shell strategy on PeNCs[18]. Copyright © 2016, John Wiley and Sons, Copyright © 2020, American Chemical Society. Copyright © 2020, Springer Nature.

Fig. 2.  (Color online) (a) Schematic diagrams of the Ruddlesden-Popper perovskite and quasi-2D perovskites[44]. Copyright © 2019, Springer Nature. (b) Emission spectra and (c) absorption spectra of quasi-2D perovskites with control of n values by adjustments of optical spacing molecule concentration[56]. Copyright © 2018, Springer Nature. (d) Schematic diagram of energy transfer in a quasi-2D perovskite film with mixed n values[45]. Copyright © 2019, Springer Nature. Operational stability of blue PeLEDs based on quasi-2D perovskite with (e) single halide composition[44] and (f) mixed halide composition[52]. Copyright © 2019 and 2020, Springer Nature.

Fig. 3.  (Color online) (a) Surface images of bulk (3D) perovskite with varying Cl contents in the film and (b) corresponding PL spectra of bulk perovskites[60]. Copyright © 2015, American Chemical Society. EL spectra operated under different applied voltages of the blue PeLEDs based on the (c) single A site perovskite (CsPbX3)[65] and (d) triple A site perovskite ((Cs/MA/FA)PbX3)[61]. Copyright © 2021, American Chemical Society. Copyright © 2017, John Wiley and Sons.

Fig. 4.  (Color online) (a) Energy levels of various charge transport/ injection layer materials with blue emissive perovskite. (b) TFB/PFI bilayer structure strategy to reduce hole injection barrier[72]. Copyright © 2018, John Wiley and Sons. (c) Dipole assisted energy level tuning strategy to reduce hole injection barrier[75]. Copyright © 2019, John Wiley and Sons. (d) Interfacial engineering with thin insulating layer to prevent leakage current[62]. Copyright © 2020, American Chemical Society.

Table 1.   Recent advances of blue PeLEDs.

TypePerovskite formationEmission peak
(nm)
Lmax
(cd/m2)
EQE
(%)
Ref
NanocrystalCsPb(Br0.75/Cl0.25)34527420.07[25]
CsPb(Br/Cl)3490351.9[28]
CsPb(Br0.7/Cl0.3)34613181.2[30]
CsPb(Br/Cl)34966032.6[34]
CsPb(Br0.59/Cl0.41)34714656.3[35]
CsPbBr347925012.3[18]
Quasi-2DOLA2MA2Pb3Br1045610.024[46]
PEOA2MAn–1PbnBr3n+1 (n = 1, 2, 3)480, 494, 508191.1[48]
EA2MAn1PbnBr3n+1473, 4851002.6[49]
(PEA/GA)2Csn1PbnBr3n+149210038.2[51]
PEA2(Cs1–xEAxPbBr3)2PbBr4488219112.1[52]
(PEA/DPPA)2Csn1Pbn(Br0.67/Cl0.33) 3n+1 (n > 3)4734828.8[53]
3DMAPb(Br0.36/Cl0.64)348220.0001[58]
(Cs/MA/FA)Pb(Br0.5/Cl0.5)347535671.7[61]
(Cs/Rb/FA/PEA/K)Pb(Br0.48/Cl0.48)348440152.01[62]
CsPb(Br0.65/Cl0.35)348293524.13[66]
(Cs/FA)Pb(Br0.6/Cl0.4)3477218011.0[63]
DownLoad: CSV
[1]
Herz L M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett, 2017, 2, 1539 doi: 10.1021/acsenergylett.7b00276
[2]
Quan L N, Rand B P, Friend R H, et al. Perovskites for next-generation optical sources. Chem Rev, 2019, 119, 7444 doi: 10.1021/acs.chemrev.9b00107
[3]
De Wolf S, Holovsky J, Moon S J, et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett, 2014, 5, 1035 doi: 10.1021/jz500279b
[4]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7, 982 doi: 10.1039/c3ee43822h
[5]
Schmidt L C, Pertegás A, González-Carrero S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc, 2014, 136, 850 doi: 10.1021/ja4109209
[6]
Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15, 3692 doi: 10.1021/nl5048779
[7]
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. J Phys Chem Lett, 2017, 8, 489 doi: 10.1021/acs.jpclett.6b02800
[8]
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5
[9]
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615 doi: 10.1126/science.abb7167
[10]
Sutherland B R, Johnston A K, Ip A H, et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics, 2015, 2, 1117 doi: 10.1021/acsphotonics.5b00164
[11]
Van Le Q, Jang H W, Kim S Y. Recent advances toward high-efficiency halide perovskite light-emitting diodes: Review and perspective. Small Methods, 2018, 2, 1700419 doi: 10.1002/smtd.201700419
[12]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[13]
Lin K B, Xing J, Quan L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[14]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[15]
Shi X B, Liu Y, Yuan Z C, et al. Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv Opt Mater, 2018, 6, 1800667 doi: 10.1002/adom.201800667
[16]
Carey G H, Abdelhady A L, Ning Z J, et al. Colloidal quantum dot solar cells. Chem Rev, 2015, 115, 12732 doi: 10.1021/acs.chemrev.5b00063
[17]
Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358, 745 doi: 10.1126/science.aam7093
[18]
Dong Y T, Wang Y K, Yuan F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol, 2020, 15, 668 doi: 10.1038/s41565-020-0714-5
[19]
Dong Y, Qiao T, Kim D, et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett, 2018, 18, 3716 doi: 10.1021/acs.nanolett.8b00861
[20]
Zhang F, Zhong H, Chen C, et al. Brightly-luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano, 2015, 9, 4533 doi: 10.1021/acsnano.5b01154
[21]
Shu B, Chang Y, Xu E, et al. Highly efficient and blue-emitting CsPbBr3 quantum dots synthesized by two-step supersaturated recrystallization. Nanotechnology, 2021, 32, 145712 doi: 10.1088/1361-6528/abcc21
[22]
Yoon Y J, Lee K T, Lee T K, et al. Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule, 2018, 2, 2105 doi: 10.1016/j.joule.2018.07.012
[23]
Nedelcu G, Protesescu L, Yakunin S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2015, 15, 5635 doi: 10.1021/acs.nanolett.5b02404
[24]
Parobek D, Dong Y, Qiao T, et al. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J Am Chem Soc, 2017, 139, 4358 doi: 10.1021/jacs.7b01480
[25]
Song J Z, Li J H, Li X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162 doi: 10.1002/adma.201502567
[26]
De Roo J, Ibáñez M, Geiregat P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016, 10, 2071 doi: 10.1021/acsnano.5b06295
[27]
Bodnarchuk M I, Boehme S C, ten Brinck S, et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett, 2019, 4, 63 doi: 10.1021/acsenergylett.8b01669
[28]
Pan J, Quan L, Zhao Y B, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718 doi: 10.1002/adma.201600784
[29]
Shin Y S, Yoon Y J, Lee K T, et al. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 23401 doi: 10.1021/acsami.9b04329
[30]
Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 21655 doi: 10.1021/acsami.9b02472
[31]
Li J H, Xu L M, Wang T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 2017, 29, 1603885 doi: 10.1002/adma.201603885
[32]
Wu T, Li J N, Zou Y T, et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew Chem, 2020, 132, 4128 doi: 10.1002/ange.201914000
[33]
Shin Y S, Yoon Y J, Lee K T, et al. High-performance perovskite light-emitting diodes with surface passivation of CsPbBrxI3– x nanocrystals via antisolvent-triggered ion-exchange. ACS Appl Mater Interfaces, 2020, 12, 31582 doi: 10.1021/acsami.0c06213
[34]
Ye F H, Zhang H J, Wang P, et al. Spectral tuning of efficient CsPbBrxCl3– x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates. Chem Mater, 2020, 32, 3211 doi: 10.1021/acs.chemmater.0c00312
[35]
Zheng X, Yuan S, Liu J, et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett, 2020, 5, 793 doi: 10.1021/acsenergylett.0c00057
[36]
Liu X K, Gao F. Organic–inorganic hybrid ruddlesden–popper perovskites: An emerging paradigm for high-performance light-emitting diodes. J Phys Chem Lett, 2018, 9, 2251 doi: 10.1021/acs.jpclett.8b00755
[37]
Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10, 6897 doi: 10.1021/acsnano.6b02683
[38]
Cheng L, Cao Y, Ge R, et al. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. Chin Chem Lett, 2017, 28, 29 doi: 10.1016/j.cclet.2016.07.001
[39]
Ni L, Huynh U, Cheminal A, et al. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano, 2017, 11, 10834 doi: 10.1021/acsnano.7b03984
[40]
Zhang F, Lu H P, Tong J H, et al. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ Sci, 2020, 13, 1154 doi: 10.1039/C9EE03757H
[41]
Wang N N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10, 699 doi: 10.1038/nphoton.2016.185
[42]
Yang X L, Zhang X W, Deng J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9, 570 doi: 10.1038/s41467-018-02978-7
[43]
Zhang L, Sun C J, He T W, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light: Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[44]
Jiang Y Z, Qin C C, Cui M H, et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 2019, 10, 1868 doi: 10.1038/s41467-019-09794-7
[45]
Li Z C, Chen Z M, Yang Y C, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun, 2019, 10, 1027 doi: 10.1038/s41467-019-09011-5
[46]
Kumar S, Jagielski J, Yakunin S, et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 2016, 10, 9720 doi: 10.1021/acsnano.6b05775
[47]
Congreve D N, Weidman M C, Seitz M, et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics, 2017, 4, 476 doi: 10.1021/acsphotonics.6b00963
[48]
Chen Z M, Zhang C Y, Jiang X F, et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv Mater, 2017, 29, 1603157 doi: 10.1002/adma.201603157
[49]
Wang Q, Ren J, Peng X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 2017, 9, 29901 doi: 10.1021/acsami.7b07458
[50]
Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 2019, 31, 83 doi: 10.1021/acs.chemmater.8b02999
[51]
Zhang F J, Cai B, Song J Z, et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv Funct Mater, 2020, 30, 2001732 doi: 10.1002/adfm.202001732
[52]
Chu Z M, Zhao Y, Ma F, et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat Commun, 2020, 11, 4165 doi: 10.1038/s41467-020-17943-6
[53]
Wang C H, Han D B, Wang J H, et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat Commun, 2020, 11, 6428 doi: 10.1038/s41467-020-20163-7
[54]
Kim Y C, An H J, Kim D H, et al. High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents. Adv Funct Mater, 2021, 31, 2005553 doi: 10.1002/adfm.202005553
[55]
Wang Q, Wang X M, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10, 5633 doi: 10.1038/s41467-019-13580-w
[56]
Xing J, Zhao Y B, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8
[57]
Zhang F, Zhang X, Wang C H, et al. Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy, 2021, 79, 105486 doi: 10.1016/j.nanoen.2020.105486
[58]
Kumawat N K, Dey A, Kumar A, et al. Band gap tuning of CH3NH3Pb(Br1– xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 2015, 7, 13119 doi: 10.1021/acsami.5b02159
[59]
Kumawat N K, Jain N, Dey A, et al. Quantitative correlation of perovskite film morphology to light emitting diodes efficiency parameters. Adv Funct Mater, 2017, 27, 1603219 doi: 10.1002/adfm.201603219
[60]
Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15, 6095 doi: 10.1021/acs.nanolett.5b02369
[61]
Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5, 1600920 doi: 10.1002/adom.201600920
[62]
Yuan F, Ran C X, Zhang L, et al. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Lett, 2020, 5, 1062 doi: 10.1021/acsenergylett.9b02562
[63]
Karlsson M, Yi Z Y, Reichert S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun, 2021, 12, 361 doi: 10.1038/s41467-020-20582-6
[64]
Wang H L, Zhao X F, Zhang B H, et al. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J Mater Chem C, 2019, 7, 5596 doi: 10.1039/C9TC01205B
[65]
Yoon Y J, Shin Y S, Jang H, et al. Highly stable bulk perovskite for blue LEDs with anion-exchange method. Nano Lett, 2021, 21, 3473 doi: 10.1021/acs.nanolett.1c00124
[66]
Cheng L, Yi C, Tong Y F, et al. Halide homogenization for high-performance blue perovskite electroluminescence. Research, 2020, 2020, 1 doi: https://doi.org/10.34133/2020/9017871
[67]
Jang C H, Harit A K, Lee S, et al. Sky-blue-emissive perovskite light-emitting diodes: Crystal growth and interfacial control using conjugated polyelectrolytes as a hole-transporting layer. ACS Nano, 2020, 14, 13246 doi: 10.1021/acsnano.0c04968
[68]
Zhang C Y, Wan Q, Wang B, et al. Surface ligand engineering toward brightly luminescent and stable cesium lead halide perovskite nanoplatelets for efficient blue-light-emitting diodes. J Phys Chem C, 2019, 123, 26161 doi: 10.1021/acs.jpcc.9b09034
[69]
Jin Y, Wang Z K, Yuan S, et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv Funct Mater, 2020, 30, 1908339 doi: 10.1002/adfm.201908339
[70]
Bi C H, Yao Z W, Sun X J, et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv Mater, 2021, 33, 2006722 doi: 10.1002/adma.202006722
[71]
Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 2019, 31, 1904319 doi: 10.1002/adma.201904319
[72]
Gangishetty M K, Hou S C, Quan Q M, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 2018, 30, 1706226 doi: 10.1002/adma.201706226
[73]
Shin Y S, Yoon Y J, Heo J, et al. Functionalized PFN-X (X = Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12, 35740 doi: 10.1021/acsami.0c09968
[74]
Wang K H, Peng Y D, Ge J, et al. Efficient and color-tunable quasi-2D CsPbBrxCl3– x perovskite blue light-emitting diodes. ACS Photonics, 2019, 6, 667 doi: 10.1021/acsphotonics.8b01490
[75]
Ren Z W, Xiao X T, Ma R M, et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 2019, 29, 1905339 doi: 10.1002/adfm.201905339
[76]
Bhansali U S, Jia H P, Lopez M A Q, et al. Controlling the carrier recombination zone for improved color stability in a two-dopant fluorophore/phosphor white organic light-emitting diode. Appl Phys Lett, 2009, 94, 203501 doi: 10.1063/1.3089867
[77]
Yang J L, Siempelkamp B D, Mosconi E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater, 2015, 27, 4229 doi: 10.1021/acs.chemmater.5b01598
[78]
Zhang L Q, Yang X L, Jiang Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun, 2017, 8, 15640 doi: 10.1038/ncomms15640
[79]
Sutter-Fella C M, Miller D W, Ngo Q P, et al. Band tailing and deep defect states in CH3NH3Pb(I1– xBrx)3 perovskites as revealed by sub-bandgap photocurrent. ACS Energy Lett, 2017, 2, 709 doi: 10.1021/acsenergylett.6b00727
[80]
Chiba T, Ishikawa S, Sato J, et al. Blue perovskite nanocrystal light-emitting devices via the ligand exchange with adamantane diamine. Adv Opt Mater, 2020, 8, 2000289 doi: 10.1002/adom.202000289
[81]
Shwetharani R, Vishaka H V, Kusuma J, et al. Green to blue light emitting CsPbBr3 perovskite by ligand exchange and its encapsulation by TiO2 for tandem effect in photovoltaic applications. ACS Appl Nano Mater, 2020, 3, 6089 doi: 10.1021/acsanm.0c01293
[82]
Suh Y H, Kim T, Choi J W, et al. High-performance CsPbX3 perovskite quantum-dot light-emitting devices via solid-state ligand exchange. ACS Appl Nano Mater, 2018, 1, 488 doi: 10.1021/acsanm.7b00212
[83]
Kumawat N K, Yuan Z C, Bai S, et al. Metal doping/alloying of cesium lead halide perovskite nanocrystals and their applications in light-emitting diodes with enhanced efficiency and stability. Isr J Chem, 2019, 59, 695 doi: 10.1002/ijch.201900031
[84]
Hou S C, Gangishetty M K, Quan Q M, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421 doi: 10.1016/j.joule.2018.08.005
[85]
Li F, Liu Y, Wang H L, et al. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem Mater, 2018, 30, 8546 doi: 10.1021/acs.chemmater.8b03442
[86]
van der Stam W, Geuchies J J, Altantzis T, et al. Highly emissive divalent-ion-doped colloidal CsPb1– xMxBr3 perovskite nanocrystals through cation exchange. J Am Chem Soc, 2017, 139, 4087 doi: 10.1021/jacs.6b13079
[87]
Chiba T, Sato J, Ishikawa S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices. ACS Appl Mater Interfaces, 2020, 12, 53891 doi: 10.1021/acsami.0c11736
[88]
Lee S, Kim D B, Hamilton I, et al. Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv Sci, 2018, 5, 1801350 doi: 10.1002/advs.201801350
[89]
Gong X W, Voznyy O, Jain A, et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat Mater, 2018, 17, 550 doi: 10.1038/s41563-018-0081-x
[90]
Peng S M, Wei Q, Wang B Z, et al. Suppressing strong exciton-phonon coupling in blue perovskite nanoplatelet solids by binary systems. Angew Chem Int Ed, 2020, 59, 22156 doi: 10.1002/anie.202009193
[91]
Jeong B, Han H, Choi Y J, et al. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv Funct Mater, 2018, 28, 1706401 doi: 10.1002/adfm.201706401
[92]
Ban M Y, Zou Y T, Rivett J P H, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 2018, 9, 3892 doi: 10.1038/s41467-018-06425-5
[93]
Zhang C X, Shen T, Guo D, et al. Reviewing and understanding the stability mechanism of halide perovskite solar cells. InfoMat, 2020, 2, 1034 doi: 10.1002/inf2.12104
[94]
Naikaew A, Kumnorkaew P, Supasai T, et al. Enhancing high humidity stability of quasi-2D perovskite thin films through mixed cation doping and solvent engineering. ChemNanoMat, 2019, 5, 1280 doi: 10.1002/cnma.201900189
[95]
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater, 2019, 29, 1808843 doi: 10.1002/adfm.201808843
[96]
Kim H S, Park N G. Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Mater, 2020, 12, 78 doi: 10.1038/s41427-020-00265-w
[97]
Jang Y W, Lee S, Yeom K M, et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat Energy, 2021, 6, 63 doi: 10.1038/s41560-020-00749-7
[98]
Knight A J, Borchert J, Oliver R D J, et al. Halide segregation in mixed-halide perovskites: Influence of A-site cations. ACS Energy Lett, 2021, 6, 799 doi: 10.1021/acsenergylett.0c02475
[99]
Xu F, Zhang T Y, Li G, et al. Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J Mater Chem A, 2017, 5, 11450 doi: 10.1039/C7TA00042A
[100]
Shen Y, Shen K C, Li Y Q, et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes. Adv Funct Mater, 2021, 31, 2006736 doi: 10.1002/adfm.202006736
[101]
Wang H, Xu Y, Wu J, et al. Bright and color-stable blue-light-emitting diodes based on three-dimensional perovskite polycrystalline films via morphology and interface engineering. J Phys Chem Lett, 2020, 11, 1411 doi: 10.1021/acs.jpclett.9b03714
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1783 Times PDF downloads: 138 Times Cited by: 0 Times

    History

    Received: 02 July 2021 Revised: 18 August 2021 Online: Accepted Manuscript: 26 August 2021Uncorrected proof: 31 August 2021Published: 15 October 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yung Jin Yoon, Jin Young Kim. A recent advances of blue perovskite light emitting diodes for next generation displays[J]. Journal of Semiconductors, 2021, 42(10): 101608. doi: 10.1088/1674-4926/42/10/101608 Y J Yoon, J Y Kim, A recent advances of blue perovskite light emitting diodes for next generation displays[J]. J. Semicond., 2021, 42(10): 101608. doi: 10.1088/1674-4926/42/10/101608.Export: BibTex EndNote
      Citation:
      Yung Jin Yoon, Jin Young Kim. A recent advances of blue perovskite light emitting diodes for next generation displays[J]. Journal of Semiconductors, 2021, 42(10): 101608. doi: 10.1088/1674-4926/42/10/101608

      Y J Yoon, J Y Kim, A recent advances of blue perovskite light emitting diodes for next generation displays[J]. J. Semicond., 2021, 42(10): 101608. doi: 10.1088/1674-4926/42/10/101608.
      Export: BibTex EndNote

      A recent advances of blue perovskite light emitting diodes for next generation displays

      doi: 10.1088/1674-4926/42/10/101608
      More Information
      • Author Bio:

        Yung Jin Yoon got his BS degree in 2013 and Ph.D. degree in 2021 at UNIST. Then he joined Next Generation Energy Laboratory in UNST as a postdoc. His research focuses on optoelectronic devices based on halide perovskites

        Jin Young Kim is a professor of the UNIST. He received Ph.D. Degree from the Pusan National University in 2005. His current research topics include organic solar cells, perovskite solar cells, perovskite light emitting diodes, and water splitting devices

      • Corresponding author: jykim@unist.ac.kr
      • Received Date: 2021-07-02
      • Revised Date: 2021-08-18
      • Published Date: 2021-10-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return